

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	aiomas 1.0.3 documentation

Welcome to aiomas’ documentation!

PyPI [https://pypi.python.org/pypi/aiomas] |
Bitbucket [https://bitbucket.org/sscherfke/aiomas] |
Mailing list [https://groups.google.com/forum/#!forum/python-tulip] |
IRC: #asyncio

aiomas is an easy-to-use library for request-reply channels, remote
procedure calls (RPC) and multi-agent systems (MAS). It’s written in pure
Python on top of asyncio [https://docs.python.org/3/library/asyncio.html].

The package is released under the MIT license. It requires Python 3.4 and above
and runs on Linux, OS X, and Windows.

Below you’ll find a list of features. You can also take a look at the
overview section to learn what aiomas is and see some simple
examples. If you like this package, go and install it!

Features

	Three layers of abstraction around raw TCP / unix domain sockets:
	Request-reply channels

	Remote-procedure calls (RPC)

	Agents and containers

	TLS support for authorization and encrypted communication.

	Interchangeable and extensible codecs: JSON [http://www.json.org/] and MsgPack [http://msgpack.org/] (the latter
optionally compressed with Blosc) are built-in. You can add custom codecs or
write (de)serializers for your own objects to extend a codec.

	Deterministic, emulated sockets: A LocalQueue transport lets you send and
receive message in a deterministic and reproducible order within a single
process. This helps testing and debugging distributed algorithms.

Contents:

	Overview

	Installation
	Updating aiomas

	Using MsgPack and Blosc

	Topical Guides
	The agent layer

	The RPC layer

	The channel layer

	Codecs for message serialization

	Container clocks

	Testing and debugging

	Enabling transport security (TLS)

	Developer Docs
	Development Setup

	How to Contribute

	Change log

	Release Process

	License

	API reference
	aiomas

	aiomas.agent

	aiomas.channel

	aiomas.clocks

	aiomas.codecs

	aiomas.exceptions

	aiomas.local_queue

	aiomas.rpc

	aiomas.subproc

	aiomas.util

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

Overview

Aiomas’ main goal is making it easier to create distributed systems (like
multi-agent systems (MAS)) with pure Python and asyncio [https://docs.python.org/3/library/asyncio.html].

Therefore, it adds three layers of abstraction around the transports (TCP or
Unix domain sockets) that asyncio provides:

[image: The three architectual layers of aiomas]

	The channel layer allows you to send and receive
actual data like strings, lists of numbers instead of single bytes.

The Channel class lets you make requests and
asynchronously wait for the corresponding replies.

Every channel has a Codec instance that is
responsible for (de)serializing the data that is being sent via the channel.
By default, JSON [http://www.json.org/] is used for that. Alternatively, you can use MsgPack [http://msgpack.org/]
and optionally compress it using Blosc [http://blosc.org/]. You can also extend codecs with
custom serializers for more object types.

>>> import aiomas
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555))
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

	The remote procedure call (RPC) layer lets you call
function on remote objects.

You can expose the methods of an object as well as normal functions within
a dict. On the peer side of the connection, proxy objects represent these
exposed functions.

>>> import aiomas
>>>
>>>
>>> class MathServer:
... router = aiomas.rpc.Service()
...
... @router.expose
... def add(self, a, b):
... return a + b
...
>>>
>>> async def client():
... """Client coroutine: Call the server's "add()" method."""
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... rep = await rpc_con.remote.add(3, 4)
... print('What’s 3 + 4?', rep)
... await rpc_con.close()
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), MathServer()))
>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

	The agent layer hides some of the RPC layer’s
complexity and allows you to create thousands of interconnected objects
(agents) without opening thousands of unique connections between them.

Therefore, all agents live within a container. Containers take care of
handling agent instances and performing the communication between them.

The container provides a clock for the agents. This clock can either be
synchronized with the real (wall-clock) time or be set by an external
process (e.g., external simulators).

>>> import aiomas
>>>
>>> class TestAgent(aiomas.Agent):
... def __init__(self, container):
... super().__init__(container)
... print('Ohai, I am %s' % self)
...
... async def run(self, addr):
... remote_agent = await self.container.connect(addr)
... ret = await remote_agent.service(42)
... print('%s got %s from %s' % (self, ret, remote_agent))
...
... @aiomas.expose
... def service(self, value):
... return value
>>>
>>> c = aiomas.Container.create(('localhost', 5555))
>>> agents = [TestAgent(c) for i in range(2)]
Ohai, I am TestAgent('tcp://localhost:5555/0')
Ohai, I am TestAgent('tcp://localhost:5555/1')
>>> aiomas.run(until=agents[0].run(agents[1].addr))
TestAgent('tcp://localhost:5555/0') got 42 from TestAgentProxy('tcp://localhost:5555/1')
>>> c.shutdown()

The following sections explain theses layers in more detail.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

Installation

aiomas requires Python >= 3.4 and runs on Linux, OS X and Windows. The
default installation uses the JSON codec and only has pure Python
dependencies.

If you have an active virtualenv [https://virtualenv.pypa.io/en/latest/], you can just run pip [https://pip.pypa.io/] to install it:

$ pip install aiomas

If you don’t use a virtualenv (you should) and are not sure, which Python
interpreter pip will use, you can manually select one:

$ python3.5 -m pip install aiomas

Updating aiomas

To upgrade your installation, use the -U flag for the install command:

$ pip install -U aiomas

Using MsgPack and Blosc

The MsgPack [https://pypi.python.org/pypi/msgpack-python/] codec and its Blosc [https://pypi.python.org/pypi/blosc/] compressed version are optional features,
that you need to explicitly install if you need them. Both packages require
a C compiler for the installation:

$ pip install aiomas[mp] # Enables the MsgPack codec
$ pip install aiomas[mpb] # Enables the MsgPack and MsgPackBlosc codecs

Windows users can download pre-compiled binary packages from Christoph
Gohlke’s website [http://www.lfd.uci.edu/~gohlke/pythonlibs/] (msgpack [http://www.lfd.uci.edu/~gohlke/pythonlibs/#msgpack] | blosc [http://www.lfd.uci.edu/~gohlke/pythonlibs/#blosc]) and install them with pip:

C:\> pip install aiomas
C:\> pip install Downloads\msgpack_python-0.4.7-cp35-none-win_amd64.whl
C:\> pip install Downloads\blosc-1.2.8-cp35-none-win_amd64.whl

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

Topical Guides

	The agent layer

	The RPC layer

	The channel layer

	Codecs for message serialization

	Container clocks

	Testing and debugging

	Enabling transport security (TLS)

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

The agent layer

This section describes the agent layer and gives you enough information to
implement your own distributed system without going too much into detail. For
that, you should also read the section about the RPC layer.

Overview

You can think of agents as small, independent programs running in parallel.
Each agent waits for input (e.g., incoming network messages), processes the
input and creates, based on its internal state and the input, some output (like
outgoing network messages).

You can also imagine them as being like normal objects that call other object’s
methods. But instead of calling these methods directly, they do remote
procedure calls (RPC) via a network connection.

In theory, that means that every agent has a little server with an event loop
that waits for incoming messages and dispatches them to the corresponding
method calls.

Using this model, you would quickly run out of resources with hundreds or
thousands of interconnected agents. For this reason, agents are clustered in
containers. A container provides the network server and event loop which all
agents within the container share.

Agents are uniquely identified by the container’s address and an ID (which is
unique within a container), for example: tcp://localhost:5555/42.

The following image illustrates this: If Agent C wants to send a message to
Agent A, its container connects to A’s container. Agent C can now send
a message to Agent A. If Agent C now wanted to send a message to Agent
B, it would simply reuse the same connection:

[image: Agents live in containers. All agents within a container share the same network connection.]

As you can see in the figure above, containers also have a clock, but you can
ignore that for the moment. We’ll come back to it later.

Components of a distributed system in aiomas

	Agent: You implement your business logic in subclasses of
aiomas.Agent. Agents can be reactive or proactive.

Reactive agents only react to incoming messages. That means, they simply
expose some methods that other agents can call.

Proactive agents actively perform one ore more tasks, i.e., calling
other agent’s methods.

An agent can be both, proactive and reactive (that just means that your
agent class exposes some methods and has one or more tasks running).

	Container: All agents live in a container. The agent container
implements everything networking related (e.g., a shared RPC server) so that
the agent base class can be as light-weight as possible. It also defines
the codec used for message (de)serialization and provides a clock for
agents.

	Codec: Codecs define how messages to other agents get serialized to
byte strings that can be sent over the network. The base codecs can only
serialize the most common object types (like numbers, strings, lists or
dicts) but you can extend them with serializers for custom object types.

The Codecs section explain all this in detail.

	Clock: Every container provides a clock for agents. Clocks are
important for operations with a timeout (like sleep()). The default
clock is a real-time clock synchronized to your system’s time.

However, if you want to integrate your MAS with a simulation, you may want
to let the time pass faster then real-time (in order to decrease the
duration of your simulation). For that use case, aiomas provides a clock
that can be synchronized with external sources.

All clocks provide functions to get the current time, sleep for some time
or execute a task after a given timeout. If you use these function instead
of the once asyncio provides, you can easily switch between different kinds
of clocks. The Clocks section provides more details and
examples.

Don’t worry if you feel a bit confused now. I’ll explore all of this with
small, intuitive examples.

Hello World: A single, proactive agent

In our first example, we’ll create a very simple agent which repeatedly prints
“Hello, World!”:

>>> import aiomas
>>>
>>> class HelloWorld(aiomas.Agent):
... def __init__(self, container, name):
... # We must pass a ref. to the container to "aiomas.Agent":
... super().__init__(container)
... self.name = name # Our agent's name
...
... async def run(self):
... # This method defines the task that our agent will perform.
... # It's usually called "run()" but you can name it as wou want.
... print(self.name, 'says:')
... clock = self.container.clock
... for i in range(3):
... await clock.sleep(0.1)
... print('Hello, World!')

Agents should be a subclass of Agent. This base class needs
a reference to the container the agents live in, so you must forward
a container argument to it if you override __init__().

Our agent also defines a task run() which prints “Hello, World!” three
times. The task also uses the container’s clock to sleep for a small amout of
time between each print.

The task run() can either be started automatically in the agent’s
__init__() or manually after the agent has been instantiated. In our
example, we will do the latter.

The clock (see clocks) exposes various time related functions
similar to those that asyncio offers, but you can easily exchange the default
real-time clock of a container with another one (e.g., one where time passes
faster than real-time, which is very useful in simulations).

Now lets see how we can instantiate and run our agent:

>>> # Containers need to be started via a factory function:
>>> container = aiomas.Container.create(('localhost', 5555))
>>>
>>> # Now we can instantiate an agent an start its task:
>>> agent = HelloWorld(container, 'Monty')
>>> aiomas.run(until=agent.run())
Monty says:
Hello, World!
Hello, World!
Hello, World!
>>> container.shutdown() # Close all connections and shutdown the server

In order to run the agent, you need to start a Container first. The
container will create an RPC server and bind it to the specified address.

The function run() is just a wrapper for loop
= asyncio.get_event_loop(); loop.run_until_complete(task).

These are the very basics auf aiomas’ agent module. In the next example you’ll
learn how an agent can call another agent’s methods.

Calling other agent’s methods

The purpose of multi-agent systems is having multiple agents calling each
other’s methods. Let’s see how we do this. For the sake of clearness, we’ll
create two different agent types in this example where Caller calls
a method of Callee:

>>> import asyncio
>>> import aiomas
>>>
>>> class Callee(aiomas.Agent):
... # This agent does not need to override "__init__()".
...
... # "expose"d methods can be called by other agents:
... @aiomas.expose
... def spam(self, times):
... """Return a lot of spam."""
... return 'spam' * times
>>>
>>>
>>> class Caller(aiomas.Agent):
...
... async def run(self, callee_addr):
... print(self, 'connecting to', callee_addr)
... # Ask the container to make a connection to the other agent:
... callee = await self.container.connect(callee_addr)
... print(self, 'connected to', callee)
... # "callee" is a proxy to the other agent. It allows us to call
... # the exposed methods:
... result = await callee.spam(3)
... print(self, 'got', result)
>>>
>>>
>>> container = aiomas.Container.create(('localhost', 5555))
>>> callee = Callee(container)
>>> caller = Caller(container)
>>> aiomas.run(until=caller.run(callee.addr))
Caller('tcp://localhost:5555/1') connecting to tcp://localhost:5555/0
Caller('tcp://localhost:5555/1') connected to CalleeProxy('tcp://localhost:5555/0')
Caller('tcp://localhost:5555/1') got spamspamspam
>>> container.shutdown()

The agent Callee exposes its method spam() via the @aiomas.expose
decorator and thus allows other agents to call this method. The arguments and
return values of exposed methods need to be serializable.
Exposed methods can be normal functions or coroutines.

The Caller agent does not expose any methods, but defines a task run()
which receives the address of the remote agent. It can connect to that agent
via the container’s connect() method. This is a coroutine,
so you need to await its result. It’s return value is a proxy object to
the remote agent.

Proxies represent a remote object and provide access to exposed attributes
(like functions) of that object. In the example above, we use the proxy to
call the spam() function. Since this involves sending messages to the
remote agent, you always need to use await with remote method calls.

Distributing agents over multiple containers

One container can house a (theoretically) unlimited number of agents. As long
as your agents spent most of the time waiting for network IO, there’s no need
to use more than one container.

If you notice, that the Python process with your program fully utilizes its CPU
core (remember, pure Python only uses one core), its time to spawn
sub-processes with its own container to actually parallelize your application.
The aiomas.subproc module provides some helpers for this use case.

Running multiple agent containers in a single process might only be helpful for
demonstration or debugging purposes. In the latter case, you should also take
a look at the aiomas.local_queue transport. You can replace normal TCP
sockets with it and gain a deterministic order of outgoing and incoming
messages between multiple containers within a single process.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

The RPC layer

Remote procedure calls let you, as the name suggest, call functions or
methods of remote objects via a network connection (nearly) like you would call
local functions. This often leads to more readable code compared to using the
lower level channels.

Basics

The basic idea behind RPC is as follows: You have a remote object with some
methods. On the local side of the connection you have a proxy object which has
the same signature, but when you call one of the proxy’s methods, it actually
sends a message (method_name, args, kwargs) to the peer. The peer has
a router that maps method_name to an actual method. It calls the method and
sends its return value back to the proxy. The proxy method returns this value
as if it was calculated locally. This works very similarly to how
web-frameworks like Django resolve URLs and map them to views.

The following list briefly explains the most important components of aiomas
RPC:

Service side:

	An RPC server: It starts a server socket and as a root object whose methods
can be called by clients.

	An RPC service (or a hierarchy of services): RPC services are classes with
methods that clients can call. Instead of classes with methods you can also
use dicts with normal functions. Services can be nested to created
hierarchies.

	RPC routers: Routers map function names (or paths) to actual methods. An
class with an RPC service automatically creates a new router for each of its
instances.

	Exposed methods: Methods/functions need to be explicitly exposed via
a simple decorator. This is a security and safety measure which makes sure
that clients can only call functions they are intended to.

Client side:

	An RPC client: It represents a network connection to an RPC server and
provides a proxy object to its service.

	RPC proxies: Proxy objects represent the remote services. They resemble
the signature of the services they represent and delegate method calls to
them.

Here is a simple example that demonstrate how these components work together:

>>> import aiomas
>>>
>>>
>>> class MathServer:
... # The "Service" creates a router for each instance of "MathServer":
... router = aiomas.rpc.Service()
...
... # Exposed methods can be called by clients:
... @aiomas.expose
... def add(self, a, b):
... return a + b
...
>>>
>>> async def client():
... """Client coroutine: Call the server's "add()" method."""
... # Connect to the RPC server and get an "RpcClient":
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # "remote" is a Proxy to the remote service.
... # We cann call its "add()" method:
... rep = await rpc_con.remote.add(3, 4)
... print('What’s 3 + 4?', rep)
... await rpc_con.close()
>>>
>>> # Start the RPC server with an instance of the "MathServer" service:
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), MathServer()))
>>>
>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

Let’s discuss the details of what we just did:

The class MathServer is going to be the root node of our RPC server.
Therefore, it needs to be marked as RPC service by giving it a router
attribute with an aiomas.rpc.Service instance. Service is
a descriptor; when you access the router attribute through the MathServer
class, you get the Service instance, but when you access it via a
MathServer instance, you get an aiomas.rpc.Router instance
instead. The Service descriptor makes sure that every instance of
MathServer automatically gets its own Router instance.

The add() method is decorated with expose() which makes
it available for RPC calls. The arguments and return values of exposed
functions must be serializable by the Codec used.
Numbers, booleans, strings, lists and dicts should always work.

When we start our RPC server (via aiomas.rpc.start_server()) we need to
pass an instance of our MathServer class to it.

In the client, we create an RPC connection via
aiomas.rpc.open_connection(). It returns an
aiomas.rpc.RpcClient instance. We can get the proxy to the RPC root
node via its remote attribute. In contrast to
normal method calls, we need to use the await [https://docs.python.org/3/reference/expressions.html#await] (or yield
from) statement for remote method calls.

Using dictionaries with functions as RPC services

Sometimes, you don’t want or don’t need classes but plain Python functions.
With aiomas you can put them in a dict and expose them as an RPC service, too.
Here’s a rewrite of out math server example that we discussed in the last
section:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> math_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # Start the RPC server with the math service:
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), math_service))
>>>
>>> # The client stays the same as in our last example:
>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

You just need a dict mapping names to the respective functions and wrap it with
aiomas.rpc.ServiceDict. You can then uses this to start an RPC
server.

How to build hierarchies of RPC services

When you want to expose a lot of functions, you may wish to group and
categorize them. You can do this by building hierarchies of RPC services (just
think of the RPC services as folders and the exposed methods as files, for
example). On the client side, you use the . operator to access
a sub-service (e.g., root_service.sub_service.method()).

When you build service hierarchies, you can freely mix class-based and
dictionary-based services.

If the parent service is a dictionary, you can add sub services as a new
name: service_instance pair:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...
>>> # Service dict with two sub-services:
>>> root_service = aiomas.rpc.ServiceDict({
... 'addition': adding_service, # Service dict
... 'subtraction': SubService(), # Instance(!) of service class
... })
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # Call the addition service:
... rep = await rpc_con.remote.addition.add(3, 4)
... print('What’s 3 + 4?', rep)
... # Call the subtraction service:
... rep = await rpc_con.remote.subtraction.sub(4, 3)
... print('What’s 4 - 3?', rep)
... await rpc_con.close()
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), root_service))
>>>
>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

As you can see, this is very straight forward. Like a folder that can contain
sub-folders and files, a ServiceDict can contain
sub-services and exposed functions.

Adding sub-services to a service class looks a little bit more complicated, but
basically works the same:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...
>>> class RootService:
... # You first have to declare that instances of this class will have
... # the following sub-services:
... router = aiomas.rpc.Service(['addition', 'subtraction'])
...
... def __init__(self):
... # For each(!) instance, you have to add instances of the
... # declared sub-services:
... self.addition = adding_service
... self.subtraction = SubService()
>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), RootService()))
>>>
>>> # The client remains the same
>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

What makes adding sub-services to classes a bit more complicated is the fact
that classes define the service hierarchy but you use instances for the actual
RPC servers. That’s why you first need to declare at class level which
attributes will hold sub-services and then actually add these sub-services in
the class’ __init__().

You can also manually compose hierarchies with the router’s
add() and
set_sub_router() methods. These methods give you
a bit more flexibility to create service hierarchies on-the-fly:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...
>>> class RootService:
... # In contrast to the last example, we don't declare any sub-services:
... router = aiomas.rpc.Service()
...
... def __init__(self):
... # Add a sub-services via the router's "add()" method:
... self.addition = adding_service
... self.router.add('addition')
...
... # Add a sub-service via the router's "set_sub_router()" method:
... self.subtraction = SubService()
... self.router.set_sub_router(self.subtraction.router, 'subtraction')
>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), RootService()))
>>>
>>> # The client remains the same
>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

The method add() looks the associated object has an
attribute with the specified name that holds the sub services. That service is
then exposed via the same name.

Using the method set_sub_router(), you can set any
router as a sub-router and expose it via the specified name. This provides the
most flexibility for building service hierarchies.

Bi-directional RPC: How to allow callbacks from server to client

Aiomas supports bi-directional RPC. That means that not only can a client call
server methods, but a server can also call client methods.

For uni-directional RPC, the server specifies an RPC services and a client gets
a proxy to it when it makes a connection to the server. For bi-directional
RPC, you also need to define a service for your client. The client can pass
its service instance as argument of an RPC to the server. The server will
then receive a proxy to that service, that it can use to make calls back to the
client.

That works because objects with a router attribute that is an RPC router
can be serialized and be sent to the peer where they get deserialized to an RPC
proxy object.

Let’s look at an example to see how it works. The first example uses
class-based services:

>>> import aiomas
>>>
>>>
>>> class Client:
... # The client needs to be marked as RPC service:
... router = aiomas.rpc.Service()
...
... def __init__(self, name):
... self.name = name
...
... async def run(self):
... # When we open a connection, we need to pass the service instance
... # ("self" in this case) so that a background task for it can be
... # started:
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555),
... rpc_service=self)
...
... # We can now pass the service to the server when we call one of its
... # methods:
... rep = await rpc_con.remote.server_method(self)
... print('Server reply:', rep)
...
... await rpc_con.close()
...
... # This method is exposed to the server:
... @aiomas.expose
... def get_client_name(self):
... return self.name
>>>
>>>
>>> class Server:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... async def server_method(self, client_proxy):
... # When a client passes a reference to its service, we'll receive it as
... # a proxy object which we can use to call a client method:
... client_name = await client_proxy.get_client_name()
... return 'Client name is "%s"' % client_name
>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), Server()))
>>>
>>> aiomas.run(Client('Monty').run())
Server reply: Client name is "Monty"
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

Bi-directional RPC works with class-based as well as dict-based services.
Furthermore, if your server or client provide a hierarchy of services, you can
not only pass the root service but also any of its sub-services as function
arguments.

How to handle remote exceptions

If an RPC raises an error, aiomas wraps it with
a RemoteException and forwards it to the caller. It
also provides you the source (peer name) of the exception and its original
traceback:

>>> @aiomas.expose
... def fail_badly():
... raise ValueError('"spam" is not a number')
>>>
>>> service = aiomas.rpc.ServiceDict({'fail_badly': fail_badly})
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('127.0.0.1', 5555))
... try:
... await rpc_con.remote.fail_badly()
... except aiomas.RemoteException as exc:
... print('Origin:', exc.origin)
... print('Traceback:', exc.remote_traceback)
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('127.0.0.1', 5555), service))
>>>
>>> aiomas.run(client())
Origin: ('127.0.0.1', 5555)
Traceback: Traceback (most recent call last):
 ...
ValueError: "spam" is not a number

>>> server.close()
>>> aiomas.run(server.wait_closed())

It is currently not possible to forward the original exception instance,
because the caller might not have the required code available (However, I won’t
rule out the possibility that I might eventually implement this).

How to get a list of connected clients

An RPC service on the server side does not know if or when a new client
connects. However, you can pass a client connected callback to
aiomas.rpc.start_server() that cats called once for each new
connection. Its only argument is the RpcClient for that
connection. You can uses this, for example, to close the connection with the
client or call the client’s exposed methods (if there are some).

>>> service = aiomas.rpc.ServiceDict({})
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('127.0.0.1', 5555))
... await rpc_con.close()
>>>
>>> def client_connected_cb(rpc_client):
... print('Client connected:', rpc_client)
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('127.0.0.1', 5555), service,
... client_connected_cb))
>>>
>>> aiomas.run(client())
Client connected: <aiomas.rpc.RpcClient object at 0x...>
>>> server.close()
>>> aiomas.run(server.wait_closed())

How to handle connection losses

For many reasons, the connection between two endpoints can be lost at any time.

If you are in a coroutine and actively doing RPC, you will get
a ConnectionResetError [https://docs.python.org/3/library/exceptions.html#ConnectionResetError] thrown into your coroutine if the connection
drops:

>>> import aiomas
>>>
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # The server will close the connection when we make the following call:
... try:
... await rpc_con.remote.close_connection()
... except ConnectionResetError:
... print('Connection lost :(')
>>>
>>>
>>> class Server:
... router = aiomas.rpc.Service()
...
... def __init__(self):
... self.clients = []
...
... def client_connected(self, client):
... """*Client connected cb.* that adds new clients to ``self.clients``"""
... self.clients.append(client)
...
... @aiomas.expose
... async def close_connection(self):
... """Close all open connections and remove them from ``self.clients``."""
... while self.clients:
... client = self.clients.pop()
... await client.close()
>>>
>>> server_service = Server()
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
... server_service,
... server_service.client_connected))
>>>
>>> aiomas.run(client())
Connection lost :(
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

If you only serve an RPC service, it gets a little bit more complicated,
because RPC services are not connection-aware. However,
aiomas.rpc.RpcClient.on_connection_reset() lets you register a callback
that gets called when the connection is lost. (You get an instance of
RpcClient as return value from
open_connection() or via
start_server()‘s client connected callback.)

In the following example, the server again has a list of connected clients.
But this time, the client disconnects and the server removes the closed
connection from its list of clients:

>>> import aiomas
>>>
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... await rpc_con.close()
>>>
>>>
>>> class Server:
... router = aiomas.rpc.Service()
...
... def __init__(self):
... self.clients = []
...
... def client_connected(self, client):
... # Register a callback that removes the client from our list
... # when it disconnects:
... def remove_client(exc):
... print('Client disconnected :(')
... self.clients.remove(client)
...
... client.on_connection_reset(remove_client)
... print('Client connected :)')
... self.clients.append(client)
>>>
>>> server_service = Server()
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
... server_service,
... server_service.client_connected))
>>>
>>> aiomas.run(client())
Client connected :)
Client disconnected :(
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

The channel layer

The channel layer is aiomas’ lowest layer of abstraction. It lets you send and
receive complete messages. In contrast to asyncio’s built-in stream
protocol [https://docs.python.org/3/library/asyncio-stream.html] which just
sends byte strings, messages are JSON-encoded [*] data (which is a lot more
convenient).

	[*]	Actually, whether JSON is used for encoding, depends on the codec that the channel uses. JSON is the default, but you can also
use MsgPack or something else. At the bottom of this document, there’s
a section explaining aiomas’ message format in detail.

Here is a minimal example that shows how the Channel
can be used:

>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555))
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

A communication channel has two sides: The client side is created and returned
by open_connection(). For each client connection, the server creates
a Channel instance and starts a new background task of the client
connected callback (client_connected_cb) to which it passes that channel
instance.

Both, the client and server side, can send and receive messages. In the
example above, the client starts to send a request and the server side waits
for incoming requests. A request has a content attribute
which holds the actual message. To send a reply, you can either use
Request.reply() or Request.fail(). Channel.send() and
Request.reply() take any data that the channel’s codec can serialize
(e.g., strings, numbers, lists, dicts, ...). Request.fail() takes an
exception instance which is raised at the requesting side as
RemoteException, as the following example
demonstrates:

>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555))
... try:
... rep = await channel.send('ohai')
... print(rep)
... except aiomas.RemoteException as e:
... print('Got an error:', str(e))
... finally:
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.fail(ValueError(42))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('127.0.0.1', 5555), handle_client))
>>> aiomas.run(client())
ohai
Got an error: Origin: ('127.0.0.1', 5555)
ValueError: 42

>>> server.close()
>>> aiomas.run(server.wait_closed())

These are the basics of the channel layer. The following sections answer some
detail questions.

How can I use and another codec?

In order to use another codec as the default JSON one,
just pass the corresponding codec class (e.g., MsgPack
to open_connection() and start_server():

>>> import aiomas
>>>
>>> CODEC = aiomas.codecs.MsgPack
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555),
... codec=CODEC)
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client,
... codec=CODEC))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

Note, that the codecs aiomas.codecs.MsgPack and
aiomas.codecs.MsgPackBlosc are not available by default but have to
be explicitly enabled.

How can I serialize custom data types?

Both, open_connection() and start_server() take a list of
extra_serializers. Such a serializer is basically a function returning
a three-tuple (type, serialize, deserialize). You can find more details in
the codecs guide. Here is just a simple example:

>>> import aiomas
>>>
>>>
>>> class MyType:
... """Our serializable type."""
... def __init__(self, value):
... self.value = value
...
... def __repr__(self):
... return '%s(%r)' % (self.__class__.__name__, self.value)
>>>
>>>
>>> def serialize_mytype(obj):
... """Return a JSON serializable version "MyType" instances."""
... return obj.value
>>>
>>>
>>> def deserialize_mytype(value):
... """Make a "MyType" instance from *value*."""
... return MyType(value)
>>>
>>>
>>> def mytype_serializer():
... return (MyType, serialize_mytype, deserialize_mytype)
>>>
>>>
>>> EXTRA_SERIALIZERS = [mytype_serializer]
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(
... ('localhost', 5555), extra_serializers=EXTRA_SERIALIZERS)
... rep = await channel.send(['ohai', MyType(42)])
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply(MyType('cya'))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client,
... extra_serializers=EXTRA_SERIALIZERS))
>>> aiomas.run(client())
['ohai', MyType(42)]
MyType('cya')
>>> server.close()
>>> aiomas.run(server.wait_closed())

A shorter version for common cases is using the
aiomas.codecs.serializable() decorator:

>>> import aiomas
>>>
>>>
>>> @aiomas.codecs.serializable
... class MyType:
... """Our serializable type."""
... def __init__(self, value):
... self.value = value
>>>
>>>
>>> EXTRA_SERIALIZERS = [MyType.__serializer__]
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(
... ('localhost', 5555), extra_serializers=EXTRA_SERIALIZERS)
... rep = await channel.send(['ohai', MyType(42)])
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply(MyType('cya'))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client,
... extra_serializers=EXTRA_SERIALIZERS))
>>> aiomas.run(client())
['ohai', MyType(value=42)]
MyType(value='cya')
>>> server.close()
>>> aiomas.run(server.wait_closed())

How can I bind a server socket to a random port?

You cannot ask your OS for an available port but have to try a randomly chosen
port until you succeed:

>>> import errno
>>> import random
>>>
>>> max_tries = 100
>>> port_range = (49152, 65536)
>>>
>>> async def random_server(host, port_range, max_tries):
... for i in range(max_tries):
... try:
... port = random.randrange(*port_range)
... server = await aiomas.channel.start_server(
... (host, port), handle_client)
... except OSError as oe:
... if oe.errno != errno.EADDRINUSE:
... # Re-raise if not errno 48 ("address already in use")
... raise
... else:
... return server, port
... raise RuntimeError('Could not bind server to a random port.')
>>>
>>> server, port = aiomas.run(random_server('localhost', port_range, max_tries))
>>> server.close()
>>> aiomas.run(server.wait_closed())

Connection timeouts / Starting clients before the server

Sometimes, you need to start a client before the server is started. Therefore,
the function open_connection() lets you specify a timeout. It
repeatedly retries to connect until timeout seconds have passed. By default,
timeout is 0 which means there is only one try.

>>> import asyncio
>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... # Try to connect for 1s:
... channel = await aiomas.channel.open_connection(('localhost', 5555),
... timeout=1)
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> # Start the client in background, ...
>>> t_client = asyncio.async(client())
>>> # wait 0.5 seconds, ...
>>> aiomas.run(asyncio.sleep(0.5))
>>> # and finally start the server:
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555), handle_client))
>>> aiomas.run(t_client)
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

How exactly do messages look like?

This section explains how aiomas messages look and how they are constructed.
You can easily implement this protocol in other languages, too, and write
programs that can communicate with aiomas.

Network messages consists of a four bytes long header and a payload of
arbitrary length. The header is an unsigned integer (uint32 [http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html#tag_13_47_03_01])
in network byte order (big-endian) and stores the number of bytes in the
payload. The payload itself is an encoded [†] list containing the message
type, a message ID and the actual content:

[image: Messages consist of a header and a payload. The payload is a JSON list containing a message type, ID and the actual content.]

	[†]	Depending on the codec you use, the payload may be
a UTF-8 encoded JSON [http://www.json.org/] string
(json.dumps().encode('utf-8')) (this is the default), a MsgPack [http://msgpack.org/] list (msgpack.packb()), or whatever else
the codec produces.

Messages send between two peers must follow the request-reply pattern [https://en.wikipedia.org/wiki/Request-response]. That means, every request
that one peer makes must be responded to by the other peer. Request use the
message type 0, replies use 1 for success or 2 to indicate
a failure. The message ID is an integer that is unique for every request that
a network socket makes. Replies (no matter if successful or failed) need to
use the message ID of the corresponding request.

On the channel layer, the content of a request can be anything. On the RPC
level, it a three-tuple (function_path, args, kwargs), e.g.:

[function, [arg0, arg1, ...], {kwarg0: val0, kwarg1: val1}]

Thereby, function is always a string containing the name of an exposed
functions; if you use nested services, sub-services and the function names are
separated by slashes (/) as in URLs. The type of the arguments and keyword
arguments [https://docs.python.org/3/glossary.html#term-argument] may vary
depending on the function.

The content types of replies are the same for both, the channel layer and the
RPC layer. Normal (successful) replies can be anything. The content of
failure replies are strings with the error message and/or a stack trace.

Note

If the JSON codec is used, aiomas messages are
compatible with simpy.io [https://bitbucket.org/simpy/simpy.io] (and
therewith with the co-simulation framework mosaik [https://mosaik.offis.de], too).

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

Codecs for message serialization

Codecs are used to convert the objects that you are going to send over the
network to bytes and the bytes that you received back to the original objects.
This is called serialization and deserialization.

A codec specifies, how the text representation of a certain object looks like.
It can also recreate the object based on its text representation.

For example, the JSON encoded representation of the list ['spam', 3.14]
would be b'["spam",3.14]'.

Many different codecs exists. Some of the most widely used ones are JSON [http://www.json.org/],
XML [http://www.w3.org/XML/] or MsgPack [http://msgpack.org/]. They mainly differ in their:

	verbosity or compactness: How many bytes are needed to encode an
object?

	performance: How fast can they encode and decode objects?

	readability: Can the result easily be read by humans?

	availability on different platforms: For which programming languages do
libraries or bindings exist?

	security: Is it possible to decode bytes to arbitrary objects?

Which codec is the best very much depends on your specific requirements.
An evaluation of different codecs and serialization formats is beyond
the scope of this document, though.

Which codecs does aiomas support?

Aiomas implements the following codecs:

	aiomas.codecs.JSON

	aiomas.codecs.MsgPack

	aiomas.codecs.MsgPackBlosc

JSON

We chose JSON as default, because it is available through the standard library
(no additional dependencies) and because it is relatively efficient (both, in
terms of performance and serialization results). It is also widely used and
supported as well as human readable.

MsgPack

The MsgPack codec can be more efficient but requires you to compile
a C extension. For this reason, it is not enabled by default but available as
an extra feature. To install it run:

$ pip install -U aiomas[mp] # Install aiomas with MsgPack
$ # or
$ pip install -U aiomas msgpack-python

MsgPackBlosc

If you want to send long messages, e.g., containing large NumPy arrays, further
compressing the results of MsgPack with Blosc [http://blosc.org/] can give you additional
performance. To enable it, install:

$ pip install -U aiomas[mpb] # Install aiomas with MsgPack-Blosc
$ # or
$ pip install -U aiomas msgpack-python blosc

Which codec should I use?

You should always start with the default JSON codec. It should usually be
“good enough”.

If your messages contain large chunks of binary data (e.g., serialized NumPy
arrays), you should evaluate MsgPack, because it natively serializes objects to
bytes.

MsgPackBlosc may yield better performance then MsgPack if your messages become
very large and/or you really send a lot of messages. The codec can decrease
the memory consumption of your program and reduce the time it takes to send
a message.

Note

All codecs live in the aiomas.codecs package but, for your
convenience, you can also import them directly from aiomas.

How do I use codecs?

As a normal user, you don’t have to interact with codecs directly. You only
need to pass the class object of the desired codec as a parameter to some
functions and classes if you don’t want to use the default.

Which object types can be (de)serialized?

All codecs bundled with aiomas support serializing the following types out of
the box:

	NoneType

	bool

	int

	float

	str

	list / tuple

	dict

MsgPack and MsgPackBlosc also support bytes.

Note

JSON deserializes both, lists and tuples, to lists. MsgPack on the other
hand deserializes them to tuples.

RPC connections support serializing arbitrary objects with RPC routers which
get deserialized to Proxies for the corresponding remote object. See
Bi-directional RPC: How to allow callbacks from server to client for details.

In addition, connections made by a Container support
Arrow [http://crsmithdev.com/arrow/] date objects.

How do I add serializers for additional object types?

All functions and classes that accept a codec parameter also accept an
optional list of extra_serializers. The list must contain callables with the
following signature: callable() -> tuple(type, serialization_func,
deserialisation_func).

The type is a class object. The serializer will be applied to all direct
instances of that class but not to subclasses. This may change in the
future, however. The only exception is a serializer for object which, if
specified, serves as a fall-back for objects that couln’t be serialized other
ways (this is used by RPC connections to serialize objects with an RPC router).

The serializer_func is a callable with one argument – the object to be
serialized – and needs to return an object that is serializable by the base
codec (e.g., a str, bytes or dict).

The deserializer_func has the same signature, but the argument is the
serialized object and the return value a deserialized equivalent of the
original object. Usually, “equivalent” means “an object of the same type as
the original”, but objects with an RPC router, for example, get deserialized to
proxies for the original objects in order to allow remote procedure calls on
them.

Here is an example that shows how a serializer for NumPy arrays might look
like. It will only work for the MsgPack and MsgPackBlosc codecs, because
the dict returned by _serialize_ndarray() contains byte strings which JSON
cannot handle:

import aiomas
import numpy as np

def get_np_serializer():
 """Return a tuple *(type, serialize(), deserialize())* for NumPy arrays
 for usage with an :class:`aiomas.codecs.MsgPack` codec.

 """
 return np.ndarray, _serialize_ndarray, _deserialize_ndarray

def _serialize_ndarray(obj):
 return {
 'type': obj.dtype.str,
 'shape': obj.shape,
 'data': obj.tostring(),
 }

def _deserialize_ndarray(obj):
 array = np.fromstring(obj['data'], dtype=np.dtype(obj['type']))
 return array.reshape(obj['shape'])

Usage:
c = aiomas.Container(('localhost', 5555), codec=aiomas.MsgPack,
 extra_serializers=[get_np_serializer])

How to create custom codecs

The base class for all codecs is aiomas.codecs.Codec.

Subclasses must at least implement the encode()
and decode() methods.

You can use the existing codecs (e.g., JSON or
MsgPack) as examples.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

Container clocks

Clocks and time are a very important instrument and required, if your agents
want to delay the execution of a task for some time, schedule a task at
a certain time or just need to define a timeout.

Usually, the real (or wall-clock) time is used for this. In some contexts,
however, you need a different notion of time – for example if you want to
couple a multi-agent system with external simulators that usually run faster
than real-time.

For this reason, every agent container provides a clock via its
clock attribute. The default clock is the
real-time clock that asyncio uses (AsyncioClock).

An alternative clock is the ExternalClock. The time of this clock can
be set by external processes so that the time within your agent system passes
as fast (or slow) as in that external process.

The benefit of using aiomas’ clocks compared to just using what asyncio offers
is, that you can easily switch clocks (e.g., from the AsyncioClock to
the ExternalClock) without touching the agents:

>>> import aiomas
>>>
>>>
>>> CLOCK = aiomas.AsyncioClock()
>>> # CLOCK = aiomas.ExternalClock('2016-01-01T00:00:00')
>>>
>>> class Sleeper(aiomas.Agent):
... async def run(self):
... # await asyncio.sleep(.5) # <-- Don't use this!
... # Depending on the clock used, this sleeps for a "real" half
... # second or whatever the ExternalClock tells you:
... await self.container.clock.sleep(.5)
>>>
>>> container = aiomas.Container.create(('127.0.0.1', 5555), clock=CLOCK)
>>> agent = Sleeper(container)
>>> aiomas.run(agent.run())
>>> container.shutdown()

(If you uncomment the ExternalClock in the example above, your program won’t
terminate because there’s no process that sets its time.)

Date/time representations

All clocks represent time as a monotonically increasing number (not necessarily
with a defined initial value) and as date/time object (for which the arrow [https://arrow.readthedocs.io/en/latest/] package is used).

You can get the numeric time via the clock’s time() method.
Its usage is comparable to that of Python’s time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic] function.

The method utcnow() returns an Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow]
object with the current date and time in UTC [https://en.wikipedia.org/wiki/Coordinated_Universal_Time].

Note

You should work with UTC dates as much as possible. Input dates with
a local timezone should be converted to UTC as early as possible. If you
output dates, convert them as late as possible back to local time.

Doing date and time calclulations in UTC saves you from a lot of bugs, i.e.,
when dealing with daylight-saving times.

This blog post [http://lucumr.pocoo.org/2011/7/15/eppur-si-muove/] by Armin Ronacher and this talk [https://www.youtube.com/watch?v=LnVkLXRIbIg] by Taavi Burns
provide more background to the issue.

Sleeping

The container clock provides tasks that let your agent sleep for a given
amount of time or until a given time is reached.

In order to sleep for a given time, you have to use the method
sleep() with the number of seconds (as float) that you want
to sleep.

The method sleep_until() also accepts a number in seconds
(which must be greater than the current value of time()) or
an Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow] date object (which must be greater than the
current value of utcnow()).

Both methods return a future which you have to await / yield from in
order to actually sleep.

Scheduling tasks

Comparably to sleeping, you can schedule the future execution of a task in
a given period of time or at a given time.

The method call_in() will run the specified task after
a delay dt in seconds; BaseClock.call_at() will run the task at the
specified date (either in seconds or as Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow] date). You
can only pass positional arguments to these methods, because that’s what the
underlying asyncio functions allow.

Both methods are normal functions that return a handle to the scheduled call.
You can use this handle to cancel() the scheduled
execution of the task.

How to use the ExternalClock

Remember the first example which did not actually work if you used the
ExternalClock? Here is a fully working version of it:

>>> import asyncio
>>> import time
>>>
>>> import aiomas
>>>
>>>
>>> CLOCK = aiomas.ExternalClock('2016-01-01T00:00:00')
>>>
>>> class Sleeper(aiomas.Agent):
... async def run(self):
... print('Gonna sleep for 1s ...')
... await self.container.clock.sleep(1)
>>>
>>>
>>> async def clock_setter(factor=0.5):
... """Let the time pass *factor* as fast as real-time."""
... while True:
... await asyncio.sleep(factor)
... CLOCK.set_time(CLOCK.time() + 1)
>>>
>>> container = aiomas.Container.create(('127.0.0.1', 5555), clock=CLOCK)
>>>
>>> # Start the process that sets the clock:
>>> t_clock_setter = asyncio.async(clock_setter())
>>>
>>> # Start the agent an measure how long he runs in real-time:
>>> agent = Sleeper(container)
>>> start = time.monotonic()
>>> aiomas.run(agent.run())
Gonna sleep for 1s ...
>>> print('Agent process finished after %.1fs' % (time.monotonic() - start))
Agent process finished after 0.5s
>>>
>>> _ = t_clock_setter.cancel()
>>> container.shutdown()

Now that we have a background process that steps the time forward, the example
actually terminates.

In scenarios where you want to couple you agent system with the clock of
another system, the clock_setter() process would not sleep but receive
clock updates from that other process and use these updates to set the agent’s
clock to a new time.

If you distribute your agent system over multiple processes, make sure that you
spread the clock updates to all agent containers. Therefore, the
Manager agent in the aiomas.subproc exposes
a set_time() method that an agent in your
master process can call.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

Testing and debugging

Here are some general rules and ideas for developing and debugging distributed
systems with aiomas:

	Distributed systems are complex. Always start as simple as possible.
Examine and understand the behavior of that system. Start adding a bit more
complexity. Repeat.

	I find using a debugger does not work very well with async., distributed
systems, so I tend to add a lot of logging and or print() [https://docs.python.org/3/library/functions.html#print]s to my
code for debugging purposes.

	Read Develop with asyncio [https://docs.python.org/3/library/asyncio-dev.html].

	If you enable asyncio’s debug mode [https://docs.python.org/3/library/asyncio-dev.html#asyncio-debug-mode], aiomas also falls into debug mode.
It gives you better / more detailed exceptions in some cases. This impacts
performance, so it isn’t activated always.

	Write unit and integration tests and run them as often as possible. Also
check that your tests will fail if they should.

Testing coroutines and agents with pytest

My preferred testing tool is pytest [http://pytest.org/]. The plug-in
pytest-asyncio [https://pypi.python.org/pypi/pytest-asyncio] makes testing
asyncio based programs a lot easier.

As an introduction, I also suggest reading my articles on testing with asyncio [https://stefan.sofa-rockers.org/tag/asyncio/]. They are especially helpful
if you are using the channel and RPC layers. Testing agent systems is a bit
“easier” (in the sense that the tests are easier to setup). You can, of
course, also look at aiomas’ test suite [https://bitbucket.org/sscherfke/aiomas/src/tip/tests/] itself.

Here is a small example that demonstrate how you could test an agent. In this
case, the agent class itself and the tests for it are in the same module. In
real life, you would have the agent and its test in separate packages (e.g.,
exampleagent.py and test_exampleagent.py).

import pytest
import aiomas

#
Production code (exampleagent.py)
#

class ExampleAgent(aiomas.Agent):
 async def run(self, target_addr, num):
 remote_agent = await self.container.connect(target_addr)
 return (await remote_agent.service(num))

 @aiomas.expose
 async def service(self, val):
 await self.container.clock.sleep(0.001)
 return val

#
Testing code (test_exampleagent.py)
#

@pytest.yield_fixture
def container(event_loop, unused_tcp_port):
 """This fixture creates a new Container instance for every test and binds
 it to a random port.

 It requires the *event_loop" fixture, so every test will also have a fresh
 event loop.

 """
 # Create container and bind its server socket to a random port:
 c = aiomas.Container.create(('127.0.0.1', unused_tcp_port))

 # Yield the container to the test case:
 yield c

 # Clean-up that is run after the test finished:
 c.shutdown()

The "@pytest.mark.asyncio" decorator allows you do use "await"/"yield from"
directly within your test case.
#
The "container" argument tells pytest to pass the return/yield value of the
corresponding fixture to your test.
@pytest.mark.asyncio
async def test_example_agent(container):
 num = 42
 # Start two agents:
 agents = [ExampleAgent(container) for _ in range(2)]
 # Run the 1st one and let it connect to the 2nd one. Check the return
 # value of the 1st one's run() task:
 res = await agents[0].run(agents[1].addr, num)
 assert res == num

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Topical Guides

Enabling transport security (TLS)

This guide explains how you can encrypt all messages sent with aiomas.
Transport layer security (TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security], formerly known as SSL) can be applied in
a similar fashion to all three layers (channel, RPC, agent) of aiomas and the
following sections will show you how.

Note

Even if you don’t have much experience with cryptography, you should be able
to follow this guide and use TLS encryption for your program.

Nonetheless, I strongly recommend you to learn the basics of it. A good
read is Crypto 101, by Laurens Van Houtven [https://www.crypto101.io/]. Sean Cassidy also provides
a nice overview about starting with crypto [https://www.seancassidy.me/so-you-want-to-crypto.html]. There are also various
tutorials for setting up your own PKI (1 [https://datacenteroverlords.com/2012/03/01/creating-your-own-ssl-certificate-authority/], 2 [http://blog.gosquadron.com/use-tls], 3 [https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure/], 4 [http://www.area536.com/projects/be-your-own-certificate-authority-with-openssl/]).

Security architecture

This guide assumes that your system is self-contained and you control all parts
of it. This allows you to use TLS 1.2 with a modern cipher and to setup
a public key infrastructure (PKI) with a self-signed root CA. All machines
that you deploy your system on only thrust that CA (and ignore the CAs bundled
with your OS or web browser).

Ideally, the root CA should be created on separate, non-production machine.
Depending on your security requirements, that machine should not even be
connected to the network.

You create a certificate signing request (CSR) on each production machine. You
copy the CSR to your root CA which signs it. You then copy the signed
certificate back to the production machine. Ideally, you should use an SD card
for this (they are more secure than USB flash drives), but again, this depends
on your security requirements and using SSH might also work for you.

The root CA

First, you create the root CA’s private key. It should at least be 2048, or
better, 4096 bits long. It should also be encrypted with a strong passphrase:

$ openssl genrsa -aes256 -out ca.key 4096

The key should never leave the machine, except if you store it somewhere save
(e.g., on an SD card).

Now you sign the key and create the root certificate. You use it together with
the private key for signing CSRs for other machines:

$ openssl req -new -x509 -nodes -key ca.key -out ca.pem -days 1000

The command above requires some input from you. The Common Name (e.g., the
FQDN) that you associate with the certificate must be different from the ones
that you use for your production machine’s CSRs. The certificate should be
valid for a longer period of time than the CSRs that it signs.

Certificates for production machines

You need to create one private key and CSR on each of your production machines:

$ openssl genrsa -out device.key 4096
$ openssl req -new -key device.key -out device.csr

This time, the private key is not encrypted. Otherwise, you’d have to
hard-code the password into your source code (which would make the encryption
futile) or enter it each time you start your program (which is unfeasible for
a distributed multi-agent system). The private key should still not leave the
machine; so don’t even think of putting it into version control or reusing it
on another machine.

The CSR creation requires similar input as the CA certificate that you created
above. As Common Name or FQDN you should enter the address on which the
machines server socket will be listening.

Copy device.csr to the root CA machine and sign it there:

$ openssl x509 -CA ca.pem -CAkey ca.key -CAcreateserial -req -in device.csr -out device.pem -days 365

The certificate will be valid for one year. You can change this if you want.

Transfer the certificate device.pem as well as copy of the CA
certificate ca.pem back to the originating machine.

The device.pem will be used to authenticate that machine against other
machines. ca.pem will be used to verify other machine’s certificates
when they try to authenticate themselves.

Enabling TLS for channels and RPC connections

In pure asyncio programs, you enable SSL/TLS by passing an
ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] instance to
create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection] and
create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server].

aiomas.channel.open_connection() and
aiomas.channel.start_server() (and similarly in the aiomas.rpc
module) are just wrappers for the corresponding asyncio methods and will
forward an SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] to them if one is provided.

Here is a minimal, commented example that demonstrate how to create proper
SSL contexts:

>>> import asyncio
>>> import ssl
>>>
>>> import aiomas
>>>
>>>
>>> async def client(addr, ssl):
... """Connect to *addr* and use the *ssl* context to enable TLS.
... Send "ohai" to the server, print its reply and terminate."""
... channel = await aiomas.channel.open_connection(addr, ssl=ssl)
... reply = await channel.send('ohai')
... print(reply)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle client requests by printing them. Send a reply and
... terminate."""
... request = await channel.recv()
... print(request.content)
... await request.reply('cya')
... await channel.close()
>>>
>>>
>>> addr = ('127.0.0.1', 5555)
>>>
>>> # Create an SSLContext for the server supporting (only) TLS 1.2 with
>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> server_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> server_ctx.set_ciphers('ECDH+AESGCM')
>>> # Load the cert and key for authentication against clients
>>> server_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>> # The client also needs to authenticate itself with a cert signed by ca.pem
>>> server_ctx.verify_mode = ssl.CERT_REQUIRED
>>> server_ctx.load_verify_locations(cafile='ca.pem')
>>> # Only use ECDH keys once per SSL session
>>> server_ctx.options |= ssl.OP_SINGLE_ECDH_USE
>>> # Disable TLS compression
>>> server_ctx.options |= ssl.OP_NO_COMPRESSION
>>>
>>> # Start the server.
>>> # It will use "server_ctx" to enable TLS for each connection.
>>> server = aiomas.run(aiomas.channel.start_server(addr, handle_client,
... ssl=server_ctx))
>>>
>>> # Create an SSLContext for the client supporting (only) TLS 1.2 with
>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> client_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> client_ctx.set_ciphers('ECDH+AESGCM')
>>> # The server needs to authenticate itself with a cert signed by ca.pem.
>>> # And we also want ot verify its hostname.
>>> client_ctx.verify_mode = ssl.CERT_REQUIRED
>>> client_ctx.load_verify_locations(cafile='ca.pem')
>>> client_ctx.check_hostname = True
>>> # Load the cert and key for authentication against the server
>>> client_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>>
>>> # Run the client. It will use "client_ctx" to enable TLS.
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>>
>>> # Shutdown the server
>>> server.close()
>>> aiomas.run(server.wait_closed())

As you can see, the SSL contexts used by servers and clients are slightly
different. Clients should verify that the hostname they connected to is the
same as in the server’s certificate. Servers on the other hand can set a few
more options for a TLS connection.

aiomas offers two functions that create secure SSL contexts with the
same settings as in the example above
– make_ssl_server_context() and
make_ssl_client_context():

>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem', 'device.key')
>>> server = aiomas.run(aiomas.channel.start_server(
... addr, handle_client, ssl=server_ctx))
>>>
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem', 'device.key')
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

TLS configuration for agent containers

An agent Container has its own server socket and creates
a number of client sockets when it connects to other containers.

You can easily enable TLS for both socket types by passing an
SSLCerts instance to the container. This is a named
tuple with the filenames of the root CA certificate, the certificate for
authenticating the container as well as the corresponding private key:

>>> import aiomas
>>>
>>> sslcerts = aiomas.SSLCerts('ca.pem', 'device.pem', 'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=sslcerts)
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

The container will use the make_ssl_server_context() and
make_ssl_client_context() functions to create the
necessary SSL contexts.

If you need more flexibility, you can alternatively pass a tuple with two SSL
contexts (one for the server and one for client sockets) to the container:

>>> import aiomas
>>>
>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem', 'device.key')
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem', 'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=(server_ctx, client_ctx))
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

Developer Docs

	Development Setup

	How to Contribute

	Change log

	Release Process

	License

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Developer Docs

Development Setup

This documents explains how to setup a virtual environment [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/] for developing
aiomas, how to build the documentation and how to run its test suite.

Setup

You should use at latest version of Python 3 for your devleopment, but at least
Python 3.4.

Create a fresh virtualenv with that interpreter and activate it. You can then
install all development dependencies with pip:

(aiomas)$ pip install -r requirements-setup.txt

This installs the newest version of everything. If you should into problems
with this, you can also install a well-tested set of all dependencies:

(aiomas)$ pip install -r requirements.txt

Note

If you are on Windows, you might want to download msgpack [http://www.lfd.uci.edu/~gohlke/pythonlibs/#msgpack] and blosc [http://www.lfd.uci.edu/~gohlke/pythonlibs/#blosc] wheel
packages from Christoph Gohlke’s [http://www.lfd.uci.edu/~gohlke/pythonlibs/] website instead of compiling them on
your own.

Apart from installing aiomas in editable mode [https://pip.pypa.io/en/stable/reference/pip_install/?highlight=editable#editable-installs], it also provides you the
following list of tools:

	Flake8: for checking code quality and style guides

	Pytest: for running the tests and measuing the test coverage inside your
virtualenv

	Sphinx: for building the documentation

	Tox: for running the test suite with all supported Python versions

	Twine: for uploading packages to PyPI

Building the docs

Sphinx is used to build the docs. You can find ReST source files in the
docs/ folder. The output folder for HTML documentation (and other
formats) is docs/_build/. The online documentation [https://aiomas.readthedocs.io/] on Read the
Docs [https://readthedocs.org/] is everytime you push something to Bitbucket [https://bitbucket.org/sscherfke/aiomas/].

When once you’ve set-up your venv, you can build aiomas’ documentation this
way:

(aiomas)$ cd docs/
(aiomas)$ make html # For quick builds
(aiomas)$ make clean html # For a clean/full build

For Windows user, there is a make.bat which does the same.

You can also let Sphinx check all external links:

(aiomas)$ make linkcheck

You can get a full list of make targets by running make help.

Running the tests

Aiomas uses pytest [http://pytest.org/] with the plugins pytest-asyncio [https://pypi.python.org/pypi/pytest-asyncio] and pytest-cov [https://pypi.python.org/pypi/pytest-cov] as testing
tool. Its configuration is stored in the [pytest] sectionin of
setup.cfg.

You can run all tests by executing:

(aiomas)$ py.test

By default, all doctests in README.rst and docs/, all examples
in examples/ and all tests in tests/ are run.

In order to measure the test coverage, run pytest with the following arguments:

(aiomas)$ py.test --cov=src/ --cov-report=html

This will produces a folder htmlcov with the coverage results.

You can use tox to run the test suite on all supported Python interpreters. It
also runs flake8 to do some code quality and style checks.
Currently, you need to have python3.4 and python3.5
available in your path. Running tox is then easy:

(aiomas)$ tox
[...]
________ summary ________
 py34: commands succeeded
 py35: commands succeeded
 docs: commands succeeded
 flake8: commands succeeded
 congratulations :)

If you cannot / do not want to install all the Python versions, you can limit
tox to run only a selected environment:

(aiomas)$ tox -e py35 # Only run tests on Python 3.5
(aiomas)$ tox -e flake8 # Only run flake8 checks

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Developer Docs

How to Contribute

Every open source project lives from the generous help by contributors that
sacrifice their time and aiomas is no different.

Here are a few guidelines to get you started:

	Try to limit each pull request to one change only.

	Run the tests before you commit. The docs explain [https://aiomas.readthedocs.io/en/latest/development/dev_setup.html] how to setup
a development environment and run the tests.

	No contribution is too small; please submit as many fixes for typos and
grammar bloopers as you can!

	Don’t break backward compatibility unless absolutely necessary.

	Always add tests and docs for your code.

This is a hard rule; patches with missing tests or documentation won’t be
merged.

	Write good test docstrings [https://jml.io/pages/test-docstrings.html].

	Obey PEP 8 [https://www.python.org/dev/peps/pep-0008/] and PEP 257 [https://www.python.org/dev/peps/pep-0257/]. Run flake8.

Thank you for considering to contribute to aiomas!

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Developer Docs

Change log

1.0.3 – 2016-05-09

	[FIX] The function asyncio.ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future] called in
aiomas.util.create_task() was introduced in Python 3.4.4 and is not
available in Python 3.4.0–3.4.3 (which is, e.g., used on Ubuntu 14.04).
There is now a fallback to asyncio.async() [https://docs.python.org/3/library/asyncio-task.html#asyncio.async] if
asyncio.ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future] is not available.

1.0.2 – 2016-05-04

	[CHANGE] aiomas.util.create_task() replaces
aiomas.util.async(). aiomas.util.async() is now deprecated
and will be removed in aiomas 2 and when a new Python release no longer
allows to use async as name.

	[NEW] Added developer documentation.

1.0.1 – 2016-04-22

	[BREAKING CHANGE] Renamed the async argument for Container.create()
and Container.shutdown() to as_coro. Realized to late that it will
come to name clashes with the async keyword added to Python 3.5.
I assume that no one really uses this project yet, thus I mark it as bug-fix
relaese rather then bumping aiomas to v2.

1.0.0 – 2016-04-18

	[BREAKING CHANGE] channel.Channel.close() and
rpc.RpcClient.close() are now coroutines.

	[BREAKING CHANGE] rpc.start_server() and
rpc.open_connection() now take RPC services instead of routers.
Services are the objects that contain the routers. To fix your code, replace
things like router=MyService().router with rpc_service=MyService().

	[CHANGE] channel.Channel.send() now raises a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if
a message is too long to be send. A message is too long if its length does
not fit into a 32bit unsigned integer.

	[NEW] The various connect functions now accept a timeout parameter. If
it is set to a number > 0 (or to None) it tries to connect for the
specified amount of time (or indefinitely) before raise
a ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError]. This way, you can start clients before (or
at the “same” time) you start the server.

	[NEW] You can register a callback to rpc.RpcClient that gets called
when the network connection is reset. This helps reacting to connection
losses if the rpc.RpcClient only has an RPC service running but is
not actively performing any task.

	[NEW] Added a SerializationError that gets raised if
a message cannot be serialized.

	[NEW] Added a subproc module that helps you to spawn
subprocesses for agents. Each subprocess will have a container and
a managing agent that can be remote-controlled to start more agents within
its container.

	[NEW] Added a LocalQueue transport that sends messages
of multiple connections (e.g., from different agent containers) within
a process in a deterministic order. This should make debugging, tuning and
testing easier.

	[NEW] A lot of documentation.

0.6.1 – 2015-10-21

	[CHANGE] Agent now also accepts subclasses of Container (issue #17 [https://bitbucket.org/sscherfke/aiomas/issues/17/]).

	[FIX] issue #16 [https://bitbucket.org/sscherfke/aiomas/issues/16/]: Container API docs no correctly refer to the “create()”
method.

0.6.0 – 2015-09-18

	[CHANGE]Asserted Python 3.5 compatibility and converted all examples to use
the new async and await keywords.

	[CHANGE] Container.__init__() no longer contains an asynchronous task.
Instead, you now need to call the factory function Container.create().

	[CHANGE] Removed Container.spawn(). You can now directly instantiate
agent instances but you still need to pass a reference to the agent’s
container to Agent.__init__().

	[NEW] AiomasError is the new base class for all errors in aiomas (issue
#15 [https://bitbucket.org/sscherfke/aiomas/issues/15/]).

	[NEW] Documentation tests now have their own tox environment (tox -e
docs).

	[NEW] Added support and docs [https://aiomas.readthedocs.io/en/latest/guides/tls.html] for TLS encryption.

	[NEW]Added some documentation about the channel layer.

0.5.0 – 2015-06-27

	[CHANGE] Agent addresses now start with tcp:// or ipc:// (for Unix domain
sockets) instead of just agent://.

	[CHANGE]Using dictionaries as routers is now easier (issue #13 [https://bitbucket.org/sscherfke/aiomas/issues/13/]).

	[CHANGE] Renamed the rpc attribute for routers to router.

	[CHANGE]Renamed Agent.name to Agent.addr and improved agent’s str
representation.

	[CHANGE] Updated and improved str and repr for agents, proxies and agent
proxies.

	[CHANGE]Codec.add_serializer() now raises an exception if there is
already a serializer for a given type (issue #9 [https://bitbucket.org/sscherfke/aiomas/issues/9/]).

	[NEW] Added aiomas.util.run() (and an aiomas.run() alias) which are
shortcuts for loop = asyncio.get_event_loop();
loop_run_{until_complete|forever}().

	[NEW] Added a @serializable decorator to aiomas.codecs which
simplifies making a type serializable.

	[NEW]Documentation: Overview, Agents, Codecs, Clocks (draft), Testing (draft).

	[NEW] Container.connect() checks if an agent exists in the remote
container.

	[NEW] Proxies are now cached with weakrefs.

	[FIX] issue #12 [https://bitbucket.org/sscherfke/aiomas/issues/12/]: Router.path reversed the order of path components.

	[FIX]Fixed a bug where concurrent calls to Container.connect() would
lead to multiple connections to the same address.

0.4.0 – 2015-04-15

	[CHANGE] Channel and Container no longer take codec instances but
classes. They also accept a list of factories for extra serializers.

	[CHANGE]The rpc.open_connection() and rpc.start_server() methods
no longer accept the add_to parameter. rpc.start_server() accept
a client_connected_cb instead, which should be a function with one
argument, the RpcClient for each new connection.
rpc.open_connection() already returns the RpcClient().

	[CHANGE] Renamed the package extras from MsgPack to mp and from
MsgPackBlosc to mpb to work around a bug in pip/setuptools. They are
also shorter now. ;-)

	[NEW]RpcClient no has a channel and a service attribute.

	[NEW]Improved error message for LookupError.

	[FIX] issue #8 [https://bitbucket.org/sscherfke/aiomas/issues/8/]: Every channel instance created by
channel.start_server() now has a separate codec instance to avoid
problems with some serializers.

0.3.0 – 2015-03-11

	[CHANGE] Removed LocalProxies and everything related to it because they
caused several problems. That means that agents within a single container
now also communicate via TCP sockets. Maybe something similar but more
robust will be reintroduced in a later release.

	[CHANGE] Channel.send() is no longer a coroutine. It returns a Future
instead.

	[CHANGE] Removed Container.get_url_for() which didn’t (and couldn’t) work
as I originally assumed.

	[CHANGE] JSON is now the default codec. msgpack and blosc don’t get
installed by default. This way, we only have pure Python dependencies for
the default installation which is very handy if you are on Windows. You can
enable the other codecs via pip install -U aiomas[MsgPack] or pip
install -U aiomas[MsgPackBlosc].

	[NEW] Support for Python 3.4.0 and 3.4.1 (yes, Python 3.3 with asyncio works,
too, but I’ll drop support for it as soon as it becomes a burden) (Resolves
issue #6 [https://bitbucket.org/sscherfke/aiomas/issues/6/]).

	[NEW] ExternalClock accepts a date string or an Arrow object to set the
inital date and time.

	[NEW] aiomas.util.async() which is like asyncio.async() but registers
a callback that instantly captures and raises exceptions, instead of delaying
them until the task gets garbage collected.

	[NEW] The agent container adds a serializer for Arrow dates.

	[NEW] Proxy implements __eq__() and __hash__(). Two different
proxy objects sharing the same channel and pointing to the same remote
function will no appear to be equal. This makes it less error prone to use
Proxy instances as keys in dictionaries.

	[NEW] Updated and improved flow-control for Channel and its protocol.

	[NEW] Improved error handling if the future returned by Channel.send()
is triggered or cancelled by an external party (e.g., by going out of scope).
If asyncio’s DEBUG mode is enabled, you will even get more detailed error
messages.

	[NEW] MessagePackBlosc codec. It uses msgpack to serialize messages and
blosc to compress them. It can massively reduce the message size and
consumes very little CPU time.

	[NEW] A Contract Net example
(https://bitbucket.org/sscherfke/aiomas/src/tip/examples/agent_contractnet.py)

	[NEW] __str__() representations for agents, containers and codecs (fixes
issue #5 [https://bitbucket.org/sscherfke/aiomas/issues/5/]).

	[FIX] issue #7 [https://bitbucket.org/sscherfke/aiomas/issues/7/]: Improved error handling and messages if the
(de)serialization raises an exception.

	[FIX]Containers now work with unix domain sockets.

	[FIX] Various minor bug-fixes

0.2.0 - 2015-01-23

	[CHANGE] The MsgPack codec is now the default. Thus, msgpack-python is
now a mandatory dependency.

	[CHANGE] Renamed RpcClient.call to RpcClient.remote.

	[NEW] aiomas.agent module with an Agent base class and
a Container for agents. Agents within a container communicate via direct
method calls. Agents in different containers use RPC.

	[NEW] aiomas.clock module which offers various clocks for a MAS:
	AsyncioClock is a real-time clock and wraps asyncio’s time(),
sleep(), call_later() and call_at() functions.

	ExternalClock can be synchronized with external simulation
environments. This allows you to stop the time or let it pass
faster/slower than the wall-clock time.

	[NEW] Support for unix domain sockets in aiomas.channel and
aiomas.rpc.

	[NEW] “rpc_service()” tasks created by an RPC server can now be collected
so that you can wait for their completion before you shutdown your program.

	[NEW] Added contents to the README and created a Sphinx project. Only the
API reference is done yet. A tutorial and topical guides will follow.

	[FIX] aiomas with the JSON codec is now compatible to simpy.io

0.1.0 – 2014-12-18

Initial release with the following features:

	A request-reply channel via TCP that allows to send multiple messages and
to asynconously wait for results (or an exception).

	Messages can be serialized with JSON or msgpack.

	The underlying communication protocol should be compatible with simpy.io [https://bitbucket.org/simpy/simpy.io/] (if you use JSON and no custom
serializers).

	Remote procedure calls (RPCs) supporting nested handlers and bidirectional
calls (callees can make calls to the caller before returning the actual
result).

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Developer Docs

Release Process

This document describes how to release a new version of aiomas.

Preparations

	Close all tickets for the next version [https://bitbucket.org/sscherfke/aiomas/issues?status=new&status=open].

	Update the minium required versions of dependencies in setup.py.
Update the exact version of all entries in requirements.txt.

	Run tox from the project root. All tests for all supported
versions must pass:

$ tox
[...]
________ summary ________
 py34: commands succeeded
 py35: commands succeeded
 docs: commands succeeded
 flake8: commands succeeded
 congratulations :)

	Build the docs (HTML is enough). Make sure there are no errors and undefined
references.

$ cd docs/; make clean html; cd ..

	Check if all authors are listed in AUTHORS.rst.

	Update the change logs (CHANGES.rst and
docs/development/changelog.rst). Only keep changes for the current
major release in CHANGES.rst and reference the history page from
there.

	Commit all changes:

$ hg ci -m 'Updated change log for the upcoming release.'

	Update the version number in setup.py, docs/conf.py, and
src/aiomas/__init__.py. Commit:

$ hg ci -m 'Bump version from x.y.z to a.b.c'

Warning

Do not yet tag and push the changes so that you can safely do a rollback
if one of the next step fails and you need change something!

	Write a draft for the announcement mail with a list of changes,
acknowledgements and installation instructions.

Build and release

	Test the release process. Build a source distribution and a wheel [https://pypi.python.org/pypi/wheel] package and test them:

$ python setup.py sdist bdist_wheel
$ ls dist/
aiomas-a.b.c-py2.py3-none-any.whl aiomas-a.b.c.tar.gz

Test if the packages can be installed:

$./test_release.sh a.b.c
Checking packages for aiomas==a.b.c
[...]
Source distribution looks okay.
[...]
Wheel package looks okay.

	Create or check your accounts for the test server
<https://testpypi.python.org/pypi> and PyPI [https://pypi.python.org/pypi]. Update your ~/.pypirc with your
current credentials:

[distutils]
index-servers =
 pypi
 test

[pypi]
repository = https://pypi.python.org/pypi
username = <your production user name goes here>
password = <your production password goes here>

[test]
repository = https://testpypi.python.org/pypi
username = <your test user name goes here>
password = <your test password goes here>

	Upload the distributions for the new version to the test server and test the
installation again:

$ twine upload -r test dist/aiomas*a.b.c*
$ pip install -i https://testpypi.python.org/pypi aiomas[mpb]

	Check if the package is displayed correctly:
https://testpypi.python.org/pypi/aiomas

	Finally upload the package to PyPI and test its installation one last time:

$ twine upload -r pypi dist/aiomas*a.b.c*
$ pip install -U aiomas[mpb]

	Check if the package is displayed correctly:
https://pypi.python.org/pypi/aiomas

Post release

	Push your changes:

$ hg tag a.b.c
$ hg push

	Add new version [https://bitbucket.org/sscherfke/aiomas/admin/issues/versions] (and milestone [https://bitbucket.org/sscherfke/aiomas/admin/issues/milestones]) for issues on Bitbucket.

	Send the prepared email to the mailing list and post it on Twitter/Google+.

	Post something to Planet Python (e.g., via Stefan’s blog).

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	Developer Docs

License

The MIT License (MIT)

Copyright (c) 2014 Stefan Scherfke

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

API reference

The API reference provides detailed descriptions of aiomas’ classes and
functions.

	aiomas

	aiomas.agent

	aiomas.channel

	aiomas.clocks

	aiomas.codecs

	aiomas.exceptions

	aiomas.local_queue

	aiomas.rpc

	aiomas.subproc

	aiomas.util

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas

This module provides easier access to the most used components of aiomas.
This purely for your convenience and you can, of cource, also import everything
from its actual submodule.

Decorators

	expose(func)
	Decorator that enables RPC access to the decorated function.

	serializable([cls,repr])
	Class decorator that makes the decorated class serializable by aiomas.codecs.

Functions

	async(coro_or_future[,ignore_cancel,loop])
	Deprecated alias to create_task().

	create_task(coro_or_future,*[,...])
	Run asyncio.ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future] with coro_or_future and set a callback that instantly raises all exceptions.

	get_queue(queue_id)
	Return a LocalQueue instance for the given queue_id.

	make_ssl_server_context(cafile,certfile,...)
	Return an ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] that can be used by a server socket.

	make_ssl_client_context(cafile,certfile,...)
	Return an ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] that can be used by a client socket.

	run([until])
	Run the event loop forever or until the task/future until is finished.

Exceptions

	AiomasError
	Base class for all exceptions defined by aiomas.

	RemoteException(origin,remote_traceback)
	Wraps a traceback of an exception on the other side of a channel.

Classes

	Agent(container)
	Base class for all agents.

	AsyncioClock()
	asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] based real-time clock.

	Container(base_url,clock,connect_kwargs)
	Container for agents.

	ExternalClock(utc_start[,init_time])
	A clock that can be set by external process in order to synchronize it with other systems.

	JSON()
	A Codec that uses JSON to encode and decode messages.

	MsgPack()
	A Codec that uses msgpack to encode and decode messages.

	MsgPackBlosc()
	A Codec that uses msgpack to encode and decode messages and blosc to compress them.

	SSLCerts(cafile,certfile,keyfile)
	namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple] storing the names of a CA file, a

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.agent

This module implements the base class for agents (Agent) and
containers for agents (Container).

Every agent must live in a container. A container can contain one ore more
agents. Containers are responsible for making connections to other containers
and agents. They also provide a factory function for spawning new agent
instances and registering them with the container.

Thus, the Agent base class is very light-weight. It only has a name,
a reference to its container and an RPC router (see aiomas.rpc).

	
class aiomas.agent.SSLCerts(cafile, certfile, keyfile)

	namedtuple() [https://docs.python.org/3/library/collections.html#collections.namedtuple] storing the names of a CA file, a
certificate file and the associated private key file.

See also aiomas.util.make_ssl_server_context() and
aiomas.util.make_ssl_client_context().

	
cafile

	Alias for field number 0

	
certfile

	Alias for field number 1

	
keyfile

	Alias for field number 2

	
class aiomas.agent.Container(base_url, clock, connect_kwargs)[source]

	Container for agents.

You should not instantiate containers directly but use the create()
method/coroutine instead. This makes sure that the container’s server
socket is fully operational when it is created.

The container allows its agents to create connections to other agents (via
connect()).

In order to destroy a container and close all of its sockets, call
shutdown().

	
classmethod create(addr, *, clock=None, codec=None, extra_serializers=None, ssl=None, as_coro=False)[source]

	Instantiate a container and create a server socket for it.

This function is a classmethod and coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	Parameters:	
	addr – is the address that the server socket is bound to. It may be
a (host, port) tuple for a TCP socket, a path for a Unix domain
socket, or a LocalQueue instance as returned by the
aiomas.local_queue.get_queue() function.

TCP sockets

If host is '0.0.0.0' or '::', the server is bound to
all available IPv4 or IPv6 interfaces respectively. If host
is None or '', the server is bound to all available IPv4
and IPv6 interfaces. In these cases, the machine’s FQDN (see
socket.getfqdn() [https://docs.python.org/3/library/socket.html#socket.getfqdn]) should be resolvable and point to that
machine as it will be used for the agent’s addresses.

If host is a simple (IPv4 or IPv6) IP address, it will be used
for the agent’s addresses as is.

LocalQueue

In contrast to TCP, multiple LocalQueue connections between
containers (within the same thread and OS process) send and receive
message in a deterministic order, which is useful for testing and
debugging.

LocalQueue instances should be retrieved via the
aiomas.local_queue.get_queue() function (which also
available as aiomas.get_queue()). This function always
returns the same instance for a given queue ID.

	clock – can be an instance of BaseClock.

It allows you to decouple the container’s (and thus, its agent’s)
time from the system clock. This makes it easier to integrate your
system with other simulators that may provide a clock for you or to
let your MAS run as fast as possible.

By default, the real-time AsyncioClock will
be used.

	codec – can be a Codec subclass (not an instance!).
JSON is used by default.

	extra_serializers – is an optional list of extra serializers for the codec. The list
entries need to be callables that return a tuple with the arguments
for add_serializer().

	ssl – allows you to enable TLS for all incoming and outgoing TCP
connections. It may either be an SSLCerts instance or
a tuple containing two SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] instances, where
the first one will be used for the server socket, the second one
for client sockets.

	as_coro – must be set to True if the event loop is already running when
you call this method. This function then returns a coroutine that
you need to await in order to get the container. By default it
will block until the server has been started and return the
container.

	Returns:	a fully initialized Container instance if async is
False or else a coroutine returning the instance when it is
done.

Invocation examples:

Synchronous:
container = Container.create(...)

Asynchronous:
container = await Container.create(..., as_coro=True)

	
clock

	The clock of the container. Instance of
aiomas.clocks.BaseClock.

	
connect(url, timeout=0)[source]

	Connect to the argent available at url and return a proxy to it.

url is a string <protocol>://<addr>//<agent-id> (e.g.,
'tcp://localhost:5555/0').

With a timeout of 0 (the default), there will only be one connection
attempt before an error is raised (ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError] for
TCP sockets and LocalQueue, FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] for Unix domain
sockets). If you set timeout to a number > 0 or None, this
function will try to connect repeatedly for at most that many seconds
(or indefinitely) before an error is raised. Use this if the remote
agent’s container may not yet exist.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
shutdown(as_coro=False)[source]

	Close the container’s server socket and the RPC services for all
outgoing TCP connections.

If async is left to False, this method calls
asyncio.BaseEventLoop.run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_until_complete] in order to wait
until all sockets are closed.

Set async to True if the event loop is already running (e.g.,
because you are in a coroutine). The return value then is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] that
you need to await in order to actually shut the container down:

await container.shutdown(as_coro=True)

	
validate_aid(aid)[source]

	Return the class name for the agent represented by aid if it
exists or None.

	
class aiomas.agent.Agent(container)[source]

	Base class for all agents.

	
router

	Descriptor that creates an RPC Router for every
agent instance.

You can override this in a sub-class if you need to. (Usually, you don’t.)

	
container

	The Container that the agent lives in.

	
addr

	The agent’s address.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.channel

This module implements and asyncio asyncio.Protocol [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol] protocol for a
request-reply Channel.

	
aiomas.channel.DEFAULT_CODEC

	Default codec: JSON

	
aiomas.channel.open_connection(addr, *, loop=None, codec=None, extra_serializers=(), timeout=0, **kwds)[source]

	Return a Channel connected to addr.

This is a convenience wrapper for
asyncio.BaseEventLoop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection],
asyncio.BaseEventLoop.create_unix_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_connection], and
aiomas.local_queue.create_connection().

If addr is a tuple (host, port), a TCP connection will be created.
If addr is a string, it should be a path name pointing to the unix domain
socket to connect to.
If addr is a aiomas.local_queue instance, a LocalQueue
connection will be created.

You can optionally provide the event loop to use.

By default, the JSON codec is used. You
can override this by passing any subclass of aiomas.codecs.Codec
as codec.

You can also pass a list of extra_serializers for the codec. The list
entires need to be callables that return a tuple with the arguments for
add_serializer().

With a timeout of 0 (the default), there will only be one connection
attempt before an error is raised (ConnectionRefusedError [https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError] for TCP
sockets and LocalQueue, FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] for Unix domain sockets).
If you set timeout to a number > 0 or None, this function will try to
connect repeatedly for at most that many seconds (or indefinitely) before
an error is raised. Use this if you need to start the client before the
server.

The remaining keyword argumens kwds are forwarded to
asyncio.BaseEventLoop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection] and
asyncio.BaseEventLoop.create_unix_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_connection] respectively.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomas.channel.start_server(addr, client_connected_cb, *, loop=None, codec=None, extra_serializers=(), **kwds)[source]

	Start a server listening on addr and call client_connected_cb
for every client connecting to it.

This function is a convenience wrapper for
asyncio.BaseEventLoop.create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server],
asyncio.BaseEventLoop.create_unix_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_server], and
aiomas.local_queue.create_server().

If addr is a tuple (host, port), a TCP socket will be created.
If addr is a string, a unix domain socket at this path will be created.
If addr is a aiomas.local_queue instance, a LocalQueue server
will be created.

The single argument of the callable client_connected_cb is a new instance
of Channel.

You can optionally provide the event loop to use.

By default, the JSON codec is used. You can
override this by passing any subclass of aiomas.codecs.Codec as
codec.

You can also pass a list of extra_serializers for the codec. The list
entires need to be callables that return a tuple with the arguments for
add_serializer().

The remaining keyword argumens kwds are forwarded to
asyncio.BaseEventLoop.create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server] and
asyncio.BaseEventLoop.create_unix_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_server] respectively.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
class aiomas.channel.ChannelProtocol(codec, client_connected_cb=None, *, loop)[source]

	Asyncio asyncio.Protocol [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol] which connects the low level transport
with the high level Channel API.

The codec is used to (de)serialize messages. It should be a sub-class of
aiomas.codecs.Codec.

Optionally you can also pass a function/coroutine client_connected_cb
that will be executed when a new connection is made (see
start_server()).

	
connection_made(transport)[source]

	Create a new Channel instance for a new connection.

Also call the client_connected_cb if one was passed to this class.

	
connection_lost(exc)[source]

	Set a ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] to the Channel to indicate
that the connection is closed.

	
data_received(data)[source]

	Buffer incomming data until we have a complete message and then
pass it to Channel.

Messages are fixed length. The first four bytes (in network byte
order) encode the length of the following payload. The payload is
a triple (msg_type, msg_id, content) encoded with the specified
codec.

	
eof_received()[source]

	Set a ConnectionResetError [https://docs.python.org/3/library/exceptions.html#ConnectionResetError] to the Channel.

	
write(len_bytes, content)[source]

	Serialize content and write the result to the transport.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
pause_writing()[source]

	Set the paused flag to True.

Can only be called if we are not already paused.

	
resume_writing()[source]

	Set the paused flat to False and trigger the waiter future.

Can only be called if we are paused.

	
class aiomas.channel.Request(content, message_id, protocol)[source]

	Represents a request returned by Channel.recv(). You shoudn’t
instantiate it yourself.

content contains the incoming message.

msg_id is the ID for that message. It is unique within a channel.

protocol is the channel’s ChannelProtocol instance that is used
for writing back the reply.

To reply to that request you can yield from Request.reply()
or Request.fail().

	
content

	The content of the incoming message.

	
reply(result)[source]

	Reply to the request with the provided result.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
fail(exception)[source]

	Indicate a failure described by the exception instance.

This will raise a RemoteException on the
other side of the channel.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
class aiomas.channel.Channel(protocol, codec, transport, loop)[source]

	A Channel represents a request-reply channel between two endpoints. An
instance of it is returned by open_connection() or is passed to the
callback of start_server().

protocol is an instance of ChannelProtocol.

transport is an asyncio.BaseTransport [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport].

loop is an instance of an asyncio.BaseEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop].

	
codec

	The codec used to de-/encode messages send via the channel.

	
transport

	The transport of this channel (see the Python documentation [https://docs.python.org/3/library/asyncio-protocol.html#transports]
for details).

	
send(content)[source]

	Send a request content to the other end and return a future which
is triggered when a reply arrives.

One of the following exceptions may be raised:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the message is too long (the length of the
encoded message does not fit into a long, which is ~ 4 GiB).

	RemoteException: The remote site raised an
exception during the computation of the result.

	ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] (or its subclass ConnectionResetError [https://docs.python.org/3/library/exceptions.html#ConnectionResetError]):
The connection was closed during the request.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]:
	If an invalid message type was received.

	If the future returned by this method was already triggered or
canceled by a third party when an answer to the request arrives
(e.g., if a task containing the future is cancelled). You get
more detailed exception messages if you enable asyncio’s debug
mode [https://docs.python.org/3/library/asyncio-dev.html]

try:
 result = yield from channel.request('ohai')
except RemoteException as exc:
 print(exc)

	
recv()[source]

	Wait for an incoming Request and return it.

May raise one of the following exceptions:

	ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] (or its subclass ConnectionResetError [https://docs.python.org/3/library/exceptions.html#ConnectionResetError]):
The connection was closed during the request.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]: If two processes try to read from the same
channel or if an invalid message type was received.

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
close()[source]

	Coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] that
closes the channel and waits for all sub tasks to finish.

	
get_extra_info(name, default=None)[source]

	Wrapper for asyncio.BaseTransport.get_extra_info() [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport.get_extra_info].

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.clocks

Clocks to be used with aiomas.agent.Container.

All clocks should subclass BaseClock. Currently available clock types
are:

	AsyncioClock: a real-time clock synchronized with the asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]
event loop.

	ExternalClock: a clock that can be set by external tasks / processes
in order to synchronize it with external systems or simulators.

	
class aiomas.clocks.BaseClock[source]

	Interface for clocks.

Clocks must at least implement time() and utcnow().

	
time()[source]

	Return the value (in seconds) of a monotonic clock.

The return value of consecutive calls is guaranteed to be greater or
equal then the results of previous calls.

The initial value may not be defined. Don’t depend on it.

	
utcnow()[source]

	Return an arrow.arrow.Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow] date with the current time in
UTC.

	
sleep(dt, result=None)[source]

	Sleep for a period dt in seconds. Return an
asyncio.Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future].

If result is provided, it will be passed back to the caller when
the coroutine has finished.

	
sleep_until(t, result=None)[source]

	Sleep until the time t. Return an asyncio.Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future].

t may either be a number in seconds or an arrow.arrow.Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow]
date.

If result is provided, it will be passed back to the caller when
the coroutine has finished.

	
call_in(dt, func, *args)[source]

	Schedule the execution of func(*args) in dt seconds and return
immediately.

Return an opaque handle which lets you cancel the scheduled call via
its cancel() method.

	
call_at(t, func, *args)[source]

	Schedule the execution of func(*args) at t and return
immediately.

t may either be a number in seconds or an arrow.arrow.Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow]
date.

Return an opaque handle which lets you cancel the scheduled call via
its cancel() method.

	
class aiomas.clocks.AsyncioClock[source]

	asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] based real-time clock.

	
class aiomas.clocks.ExternalClock(utc_start, init_time=0)[source]

	A clock that can be set by external process in order to synchronize
it with other systems.

The initial UTC date utc_start may either be an
arrow.arrow.Arrow [https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow] instance or something that
arrow.factory.ArrowFactory.get() [https://arrow.readthedocs.io/en/latest/index.html#arrow.factory.ArrowFactory.get] can parse.

	
class aiomas.clocks.TimerHandle(future, callback)[source]

	This class lets you cancel calls scheduled by ExternalClock.

	
cancel()[source]

	Cancel the scheduled call represented by this handle.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.codecs

This package imports the codecs that can be used for de- and encoding incoming
and outgoing messages:

	JSON uses JSON [http://www.json.org/]

	MsgPack uses msgpack [http://msgpack.org/]

	MsgPackBlosc uses msgpack [http://msgpack.org/] and
Blosc [http://blosc.org/]

All codecs should implement the base class Codec.

	
aiomas.codecs.serializable(repr=True)[source]

	Class decorator that makes the decorated class serializable by
aiomas.codecs.

The decorator tries to extract all arguments to the class’ __init__().
That means, the arguments must be available as attributes with the same
name.

The decorator adds the following methods to the decorated class:

	__asdict__(): Returns a dict with all __init__ parameters

	__fromdict__(dict): Creates a new class instance from dict

	__serializer__(): Returns a tuple with args for
Codec.add_serializer()

	__repr__(): Returns a generic instance representation. Adding this
method can be deactivated by passing repr=False to the decorator.

Example:

>>> import aiomas.codecs
>>>
>>> @aiomas.codecs.serializable
... class A:
... def __init__(self, x, y):
... self.x = x
... self._y = y
...
... @property
... def y(self):
... return self._y
>>>
>>> codec = aiomas.codecs.JSON()
>>> codec.add_serializer(*A.__serializer__())
>>> a = codec.decode(codec.encode(A(1, 2)))
>>> a
A(x=1, y=2)

	
class aiomas.codecs.Codec[source]

	Base class for all Codecs.

Subclasses must implement encode() and decode().

	
encode(data)[source]

	Encode the given data and return a bytes [https://docs.python.org/3/library/functions.html#bytes] object.

	
decode(data)[source]

	Decode data from bytes [https://docs.python.org/3/library/functions.html#bytes] to the original data structure.

	
add_serializer(type, serialize, deserialize)[source]

	Add methods to serialize and deserialize objects typed type.

This can be used to de-/encode objects that the codec otherwise
couldn’t encode.

serialize will receive the unencoded object and needs to return
an encodable serialization of it.

deserialize will receive an objects representation and should return
an instance of the original object.

	
serialize_obj(obj)[source]

	Serialize obj to something that the codec can encode.

	
deserialize_obj(obj_repr)[source]

	Deserialize the original object from obj_repr.

	
class aiomas.codecs.JSON[source]

	A Codec that uses JSON to encode and decode messages.

	
class aiomas.codecs.MsgPack[source]

	A Codec that uses msgpack to encode and decode messages.

	
class aiomas.codecs.MsgPackBlosc[source]

	A Codec that uses msgpack to encode and decode messages and
blosc to compress them.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.exceptions

Exception types used by aiomas.

	
exception aiomas.exceptions.AiomasError[source]

	Base class for all exceptions defined by aiomas.

	
exception aiomas.exceptions.RemoteException(origin, remote_traceback)[source]

	Wraps a traceback of an exception on the other side of a channel.

origin is the remote peername.

remote_traceback is the remote exception’s traceback.

	
origin = None

	Peername (producer of the exception)

	
remote_traceback = None

	Original traceback

	
exception aiomas.exceptions.SerializationError[source]

	Raised when an object cannot be serialized.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.local_queue

The local queue transport roughly mimics a normal TCP transport, but it sends
and receives messages via two asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue] instances.

Its purpose is to aid the development and debugging of complex networking
algorithms and distributed or multi-agent systems. In contrast to normal
network transports, messages send via the LocalQueueTransport will
always arrive in a deterministic order [1].

This transport does not work across multiple processes and is not thread
safe, so it should only be used within a single thread and process.

The easiest way to use it is to create a LocalQueue instance via the
get_queue() function and pass it to
aiomas.channel.start_server()/aiomas.channel.open_connection()
or aiomas.agent.Container.create() as addr argument.

	[1]	Actually, message sent via a single TCP connection also arrive at a
deterministic order (this is a property of the TCP/IP protocol). So
the LocalQueue transport won’t give you any benefits in this case.

However, if you have multiple connections to the same server and send
message through them in parallel, it’s no longer deterministic in which
order the messages arrive from the different connections. In this case,
the LocalQueue transport can help you.

	
aiomas.local_queue.get_queue(queue_id)[source]

	Return a LocalQueue instance for the given
queue_id.

If no instance is cached yet, create a new one.

Queue IDs must be strings and must not contain the / character. Raise
a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if these rules are violated.

	
aiomas.local_queue.clear_queue_cache()[source]

	Clear the global queue cache.

	
aiomas.local_queue.create_connection(protocol_factory, lq, *, loop=None, **kwds)[source]

	Connect to a LocalQueue lq.

The protocol_factory must be a callable returning a protocol [https://docs.python.org/3/library/asyncio-protocol.html] instance.

Before a connection to lq can be made, a server must
be started for this instance (see create_server()).

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] which
will try to establish the connection in the background. When successful,
the coroutine returns a (transport, protocol) pair.

	
aiomas.local_queue.create_server(protocol_factory, lq, **kwds)[source]

	Create a LocalQueue server bound to lq.

The protocol_factory must be a callable returning a protocol [https://docs.python.org/3/library/asyncio-protocol.html] instance.

Return a LocalQueueServer instance. That instance is also set
as server for lq.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
class aiomas.local_queue.LocalQueue(queue_id)[source]

	An instance of this class serves as transport description when creating
a server or connection.

The functions create_server() and create_connection() both
require an instance of this class. Alternatively, instances of this class
can be passed as addr argument to aiomas.channel.start_server()
and aiomas.channel.open_connection()

A server needs to be started before any connections can be made.

	
queue_id

	The queue’s ID.

	
server

	The LocalQueueServer instance that was bound to this
instance or None if no server has yet been started.

	
set_server(server)[source]

	Set a LocalQueueServer instance.

Raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if a server has already been bound to
this instance.

This method is called by create_server().

	
unset_server()[source]

	Unset the server from this instance.

This method is called when the server is closed (see
LocalQueueServer.close()).

	
new_connection(sendq, recvq)[source]

	Create a connection endpoint on the server side.

This method is called by create_connection().

sendq and recvq are the queues used for sending and receiving
messages to and from the client.

	
class aiomas.local_queue.LocalQueueServer(protocol_factory, lq)[source]

	Implements asyncio.events.AbstractServer. An instance of this class
is returned by create_server().

lq is the LocalQueue instance that this server was bound to.

protocol_factory is a callable that is called for each new client
connection in order to create a new protocol instance.

	
lq

	The LocalQueue the server is bound to.

	
new_connection(sendq, recvq)[source]

	Create a new protocol and transport instance.

Call the protocol factory, create a new LocalQueueTransport
with sendq and recvq and wire them together.

Called by create_connection() via
LocalQueue.new_connection().

	
close()[source]

	Close the server and unset this instance from the associated
LocalQueue instance.

	
wait_closed()[source]

	Immediately return (there’s nothing to wait for).

This method is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
class aiomas.local_queue.LocalQueueTransport(lq, sendq, recvq, protocol)[source]

	Implements asyncio.transports.Transport.

A LocalQueueTransport has to asynchronous queues (instances of
asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – one for sending messages to the other side
and one for receiving messages from it.

	
close()[source]

	Close the transport.

Buffered data will be flushed asynchronously. No more data will be
received. After all buffered data is flushed, the protocol’s
connection_lost() method will (eventually) be called with None
as its argument.

	
write(data)[source]

	Write some data bytes to the transport.

This does not block; it buffers the data and arranges for it to be sent
out asynchronously.

	
can_write_eof()[source]

	Return False. This transport does not support write_eof().

	
abort()[source]

	Close the transport immediately.

Buffered data will be lost. No more data will be received. The
protocol’s connection_lost() method will (eventually) be called
with None as its argument.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.rpc

This module implements remote procedure calls (RPC) on top of request-reply
channels (see aiomas.channel).

RPC connections are represented by instances of RpcClient (one for
each side of a aiomas.channel.Channel). They provide access to the
functions served by the peer via Proxy instances. Optionally, they
can provide their own RPC service so that the peer can make calls as well.

An RPC service is an object with a router attribute which is an instance of
Router. A router resolves paths requested by the peer. It can also
handle sub-routers (which allows you to build hierarchies for nested calls) and
is able to perform a reverse-lookup of a router (mapping a fuction to its
path).

Routers an be attached to both, classes and dictionaries with functions.
Dictionaires need to be wrapped with a ServiceDict. Classes need to
have a Service class attribute named router. Service is
a descriptor which creates a Router for every instance of that class.

Functions that should be callable from the remote side must be decorated with
expose(); Router.expose() and Service.expose() are
aliases for it.

	
aiomas.rpc.open_connection(addr, *, rpc_service=None, **kwds)[source]

	Return an RpcClient connected to addr.

This is a convenience wrapper for aiomas.channel.open_connection().
All keyword arguments (kwds) are forwared to it.

You can optionally pass a rpc_service to allow the peer to call back to
us.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomas.rpc.start_server(addr, rpc_service, client_connected_cb=None, **kwds)[source]

	Start a server socket on host:port and create an RPC service with
the provided handler for each new client.

This is a convenience wrapper for aiomas.channel.start_server().
All keyword arguments (kwds) are forwared to it.

rpc_service must be an RPC service (an object with a router attribute
that is an instance of Router).

client_connected_cb is an optional callback that will be called with
with the RpcClient instance for each new connection.

Raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if handler is not decorated properly.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomas.rpc.rpc_service_process(rpc_client, router, channel)[source]

	RPC service process for a connection rpc_lient.

Serves the functions provided by the Router router via the
Channel channel.

Forward errors raised by the handler to the caller.

Stop running when the connection closes.

This function is a coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
aiomas.rpc.expose(func)[source]

	Decorator that enables RPC access to the decorated function.

func will not be wrapped but only gain an __rpc__ attribute.

	
class aiomas.rpc.ServiceDict(dict=None)[source]

	Wrapper for dicts so that they can be used as RPC routers.

	
dict = None

	The wrapped dict.

	
router = None

	The dict’s router instance.

	
class aiomas.rpc.Service(sub_routers=())[source]

	A Data Descriptor that creates a new Router instance for each
class instance to which it is set.

The attribute name for the Service should always be router:

class Spam:
 router = aiomas.rpc.Service()

You can optionally pass a list with the attribute names of classes with
sub-routers. This required to build hierarchies of routers, e.g.:

class Eggs:
 router = aiomas.rpc.Service()

class Spam:
 router = aiomas.rpc.Service(['eggs'])

 def __init__(self):
 self.eggs = Eggs() # Instance with a sub-router

	
static expose(func)

	Alias for expose().

	
class aiomas.rpc.Router(obj)[source]

	The Router resolves paths to functions provided by their object obj
(or its children). It can also perform a reverse lookup to get the path
of the router (and the router’s obj).

The obj can be a class, an instance or a dict.

	
obj = None

	The object to which this router belongs to.

	
name = None

	The name of the router (empty for root routers).

	
parent = None

	The parent router or None for root routers.

	
path

	The path to this router (without trailing slash).

	
resolve(path)[source]

	Resolve path and return the corresponding function.

path is a string with path components separated by / (without
trailing slash).

Raise a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] if no handler function can be found for
path or if the function is not exposed (see expose()).

	
static expose(func)

	Alias for expose().

	
add(name)[source]

	Add the sub-router name (stored at self.obj.<name>) to this
router.

Convenience wrapper for set_sub_router().

	
set_sub_router(router, name)[source]

	Set self as parent for the router named name.

	
class aiomas.rpc.RpcClient(channel, rpc_service=None)[source]

	The RpcClient provides proxy objects for remote calls via its
remote attribute.

channel is a Channel instance for communicating
with the remote side.

If rpc_service is not None, it will also start its own RPC service so
the peer can call the functions we provide.

	
channel

	The communication Channel of this instance.

	
service

	The RPC service process for this connection.

	
remote

	A Proxy for remote methods.

	
on_connection_reset(callback)[source]

	Add a callback that gets called if the peer closes the connection
and thus causing the service process to abort.

callback is a callable with a single argument, the exception that the
service process raises if the connection is reset by the peer.

If this method is called multiple times, override the current callback
with the new one. If callback is None, delete the current
callback.

Raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if callback is neither callable nor
None.

Raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if this instance has not service task
running.

	
close()[source]

	Coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] that
closes the connection and waits for all sub tasks to finish.

	
class aiomas.rpc.Proxy(channel, path)[source]

	Proxy object for remote objects and functions.

	
__weakref__

	list of weak references to the object (if defined)

	
__getattr__(name)[source]

	Return a new proxy for name.

	
__call__(*args, **kwargs)[source]

	Call the remote method represented by this proxy and return its
result.

The result is a future, so you need to yield from it in order to
get the actual return value (or exception).

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.subproc

This module helps you to start() an agent container in a new
subprocess. The new container will have a Manager agent that allows
the master process to spawn other agents in the new container.

The following example demonstrate how you can build a nice CLI with the click [http://click.pocoo.org] around this module. The script will start you
a container with an ExternalClock and the
MsgPackBlosc codec:

container.py
import logging

import aiomas
import arrow
import click

def validate_addr(ctx, param, value):
 try:
 host, port = value.rsplit(':', 1)
 return (host, int(port))
 except ValueError as e:
 raise click.BadParameter(e)

def validate_start_date(ctx, param, value):
 try:
 arrow.get(value) # Check if the date can be parsed
 except arrow.parser.ParserError as e:
 raise click.BadParameter(e)
 return value

@click.command()
@click.option('--start-date', required=True,
 callback=validate_start_date,
 help='Start date for the agents (ISO-8601 compliant, e.g.: '
 '2010-03-27T00:00:00+01:00')
@click.option('--log-level', '-l', default='info', show_default=True,
 type=click.Choice(['debug', 'info', 'warning', 'error',
 'critical']),
 help='Log level for the MAS')
@click.argument('addr', metavar='HOST:PORT', callback=validate_addr)
def main(addr, start_date, log_level):
 logging.basicConfig(level=getattr(logging, log_level.upper()))
 clock = aiomas.ExternalClock(start_date, init_time=-1)
 codec = aiomas.codecs.MsgPackBlosc
 task = aiomas.subproc.start(addr, clock=clock, codec=codec)
 aiomas.run(until=task)

if __name__ == '__main__':
 main()

Example usage: python container.py
--start-date=2010-03-27T00:00:00+01:00 localhost:5556.

Note

You should use sys.executable instead of just 'python' when you
start a new subprocess from within a Python script to make sure you use the
correct (same) interpreter.

	
aiomas.subproc.start(addr, **container_kwargs)[source]

	Coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine] that
starts a container with a Manager agent.

The agent will connect to addr ('host', port) and wait for commands
to spawn new agents within its container.

The container_kwargs will be passed to
aiomas.agent.Container.create() factory function.

This coroutine finishes after Manager.stop() was called or when
a KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] is raised.

	
class aiomas.subproc.Manager(container)[source]

	An agent that can start other agents within its container.

If the container uses an ExternalClock, it can also
set the time for the container’s clock.

	
spawn(qualname, *args, **kwargs)[source]

	Create a new instance of an agent and return a proxy to it and its
address.

qualname is a string defining a class (or factory method/coroutine)
for instantiating the agent (see aiomas.util.obj_from_str() for
details). args and kwargs get passed to this callable as
positional and keyword arguemnts respectively.

This is an exposed coroutine [https://docs.python.org/3/library/asyncio-task.html#coroutine].

	
set_time(time)[source]

	Set the agent’s container’s time to time.

This only works if the container uses an
ExternalClock.

This is an exposed function.

	
stop()[source]

	Triggers the stop_received future of this agent causing its
container process to shutodwn and terminate.

This is an exposed function.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	aiomas 1.0.3 documentation

 	API reference

aiomas.util

This module contains some utility functions.

	
aiomas.util.arrow_serializer()[source]

	Return a serializer for arrow dates.

The return value is an argument tuple for
aiomas.codecs.Codec.add_serializer().

	
aiomas.util.create_task(coro_or_future, *, ignore_cancel=True, loop=None)[source]

	Run asyncio.ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future] with coro_or_future and set
a callback that instantly raises all exceptions.

If the argument is a coroutine, a asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task] object is returned.
If the argument is a Future, it is returned directly.

If ignore_cancel is left True, no exception is raised if the task was
canceled. If you also want to raise the CancelledError, set the flag
to False..

The difference between this function and asyncio.ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future] is
the behavior when an exception occurs within the background task:

Exceptions that occur within the background task are normally only raised
when you await [https://docs.python.org/3/reference/expressions.html#await] that task. If you start a background task that
runs “forever”, you will only see the exception when your program ends and
you either await [https://docs.python.org/3/reference/expressions.html#await] the task or if the task object gets garbage
collected (in which case the exception is just printed to stderr).

That means that your program can crash and you won’t notice it because no
exception is actually raised or printed. To make development and debugging
easier, this function adds a callback to the background task that will
re-raise all exceptions immediately.

	
aiomas.util.async(coro_or_future, ignore_cancel=True, loop=None)[source]

	Deprecated alias to create_task().

	
aiomas.util.run(until=None)[source]

	Run the event loop forever or until the task/future until is finished.

This is an alias to asyncio’s run_forever() if until is None and
to run_until_complete() if not.

	
aiomas.util.make_ssl_server_context(cafile, certfile, keyfile)[source]

	Return an ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] that can be used by a server socket.

The server will use the certificate in certfile and private key in
keyfile (both in PEM format) to authenticate itself.

It requires clients to also authenticate themselves. Their certificates
will be validated with the root CA certificate in cafile.

It will use TLS 1.2 with ECDH+AESGCM encryption. ECDH keys won’t be
reused in distinct SSL sessions. Compression is disabled.

	
aiomas.util.make_ssl_client_context(cafile, certfile, keyfile)[source]

	Return an ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] that can be used by a client socket.

It uses the root CA certificate in cafile to validate the server’s
certificate. It will also check the server’s hostname.

The client will use the certificate in certfile and private key in
keyfile (both in PEM format) to authenticate itself.

It will use TLS 1.2 with ECDH+AESGCM encryption.

	
aiomas.util.obj_from_str(obj_path)[source]

	Return the object that the string obj_path points to.

The format of obj_path is mod:obj where mod is a (possibly nested)
module name and obj is an . separate object path, for example:

module:Class
module:Class.function
package.module:Class
package.module:Class.function

Raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the obj_path is malformed, an
ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] if the module cannot be imported or an
AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] if an object does not exist.

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	aiomas 1.0.3 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 aiomas	

 	
 	
 aiomas.agent	

 	
 	
 aiomas.channel	

 	
 	
 aiomas.clocks	

 	
 	
 aiomas.codecs	

 	
 	
 aiomas.exceptions	

 	
 	
 aiomas.local_queue	

 	
 	
 aiomas.rpc	

 	
 	
 aiomas.subproc	

 	
 	
 aiomas.util	

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	aiomas 1.0.3 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	__call__() (aiomas.rpc.Proxy method)

 	__getattr__() (aiomas.rpc.Proxy method)

 	

 	__weakref__ (aiomas.rpc.Proxy attribute)

A

 	

 	abort() (aiomas.local_queue.LocalQueueTransport method)

 	add() (aiomas.rpc.Router method)

 	add_serializer() (aiomas.codecs.Codec method)

 	addr (aiomas.agent.Agent attribute)

 	Agent (class in aiomas.agent)

 	aiomas (module)

 	aiomas.agent (module)

 	aiomas.channel (module)

 	aiomas.clocks (module)

 	aiomas.codecs (module)

 	

 	aiomas.exceptions (module)

 	aiomas.local_queue (module)

 	aiomas.rpc (module)

 	aiomas.subproc (module)

 	aiomas.util (module)

 	AiomasError

 	arrow_serializer() (in module aiomas.util)

 	async() (in module aiomas.util)

 	AsyncioClock (class in aiomas.clocks)

B

 	

 	BaseClock (class in aiomas.clocks)

C

 	

 	cafile (aiomas.agent.SSLCerts attribute)

 	call_at() (aiomas.clocks.BaseClock method)

 	call_in() (aiomas.clocks.BaseClock method)

 	can_write_eof() (aiomas.local_queue.LocalQueueTransport method)

 	cancel() (aiomas.clocks.TimerHandle method)

 	certfile (aiomas.agent.SSLCerts attribute)

 	channel (aiomas.rpc.RpcClient attribute)

 	Channel (class in aiomas.channel)

 	ChannelProtocol (class in aiomas.channel)

 	clear_queue_cache() (in module aiomas.local_queue)

 	clock (aiomas.agent.Container attribute)

 	close() (aiomas.channel.Channel method)

 	

 	(aiomas.local_queue.LocalQueueServer method)

 	(aiomas.local_queue.LocalQueueTransport method)

 	(aiomas.rpc.RpcClient method)

 	

 	codec (aiomas.channel.Channel attribute)

 	Codec (class in aiomas.codecs)

 	connect() (aiomas.agent.Container method)

 	connection_lost() (aiomas.channel.ChannelProtocol method)

 	connection_made() (aiomas.channel.ChannelProtocol method)

 	container (aiomas.agent.Agent attribute)

 	Container (class in aiomas.agent)

 	content (aiomas.channel.Request attribute)

 	create() (aiomas.agent.Container class method)

 	create_connection() (in module aiomas.local_queue)

 	create_server() (in module aiomas.local_queue)

 	create_task() (in module aiomas.util)

D

 	

 	data_received() (aiomas.channel.ChannelProtocol method)

 	decode() (aiomas.codecs.Codec method)

 	DEFAULT_CODEC (in module aiomas.channel)

 	

 	deserialize_obj() (aiomas.codecs.Codec method)

 	dict (aiomas.rpc.ServiceDict attribute)

E

 	

 	encode() (aiomas.codecs.Codec method)

 	eof_received() (aiomas.channel.ChannelProtocol method)

 	

 	expose() (aiomas.rpc.Router static method)

 	

 	(aiomas.rpc.Service static method)

 	(in module aiomas.rpc)

 	ExternalClock (class in aiomas.clocks)

F

 	

 	fail() (aiomas.channel.Request method)

G

 	

 	get_extra_info() (aiomas.channel.Channel method)

 	

 	get_queue() (in module aiomas.local_queue)

J

 	

 	JSON (class in aiomas.codecs)

K

 	

 	keyfile (aiomas.agent.SSLCerts attribute)

L

 	

 	LocalQueue (class in aiomas.local_queue)

 	LocalQueueServer (class in aiomas.local_queue)

 	

 	LocalQueueTransport (class in aiomas.local_queue)

 	lq (aiomas.local_queue.LocalQueueServer attribute)

M

 	

 	make_ssl_client_context() (in module aiomas.util)

 	make_ssl_server_context() (in module aiomas.util)

 	Manager (class in aiomas.subproc)

 	

 	MsgPack (class in aiomas.codecs)

 	MsgPackBlosc (class in aiomas.codecs)

N

 	

 	name (aiomas.rpc.Router attribute)

 	

 	new_connection() (aiomas.local_queue.LocalQueue method)

 	

 	(aiomas.local_queue.LocalQueueServer method)

O

 	

 	obj (aiomas.rpc.Router attribute)

 	obj_from_str() (in module aiomas.util)

 	on_connection_reset() (aiomas.rpc.RpcClient method)

 	

 	open_connection() (in module aiomas.channel)

 	

 	(in module aiomas.rpc)

 	origin (aiomas.exceptions.RemoteException attribute)

P

 	

 	parent (aiomas.rpc.Router attribute)

 	path (aiomas.rpc.Router attribute)

 	

 	pause_writing() (aiomas.channel.ChannelProtocol method)

 	Proxy (class in aiomas.rpc)

Q

 	

 	queue_id (aiomas.local_queue.LocalQueue attribute)

R

 	

 	recv() (aiomas.channel.Channel method)

 	remote (aiomas.rpc.RpcClient attribute)

 	remote_traceback (aiomas.exceptions.RemoteException attribute)

 	RemoteException

 	reply() (aiomas.channel.Request method)

 	Request (class in aiomas.channel)

 	resolve() (aiomas.rpc.Router method)

 	

 	resume_writing() (aiomas.channel.ChannelProtocol method)

 	router (aiomas.agent.Agent attribute)

 	

 	(aiomas.rpc.ServiceDict attribute)

 	Router (class in aiomas.rpc)

 	rpc_service_process() (in module aiomas.rpc)

 	RpcClient (class in aiomas.rpc)

 	run() (in module aiomas.util)

S

 	

 	send() (aiomas.channel.Channel method)

 	serializable() (in module aiomas.codecs)

 	SerializationError

 	serialize_obj() (aiomas.codecs.Codec method)

 	server (aiomas.local_queue.LocalQueue attribute)

 	service (aiomas.rpc.RpcClient attribute)

 	Service (class in aiomas.rpc)

 	ServiceDict (class in aiomas.rpc)

 	set_server() (aiomas.local_queue.LocalQueue method)

 	set_sub_router() (aiomas.rpc.Router method)

 	

 	set_time() (aiomas.subproc.Manager method)

 	shutdown() (aiomas.agent.Container method)

 	sleep() (aiomas.clocks.BaseClock method)

 	sleep_until() (aiomas.clocks.BaseClock method)

 	spawn() (aiomas.subproc.Manager method)

 	SSLCerts (class in aiomas.agent)

 	start() (in module aiomas.subproc)

 	start_server() (in module aiomas.channel)

 	

 	(in module aiomas.rpc)

 	stop() (aiomas.subproc.Manager method)

T

 	

 	time() (aiomas.clocks.BaseClock method)

 	TimerHandle (class in aiomas.clocks)

 	

 	transport (aiomas.channel.Channel attribute)

U

 	

 	unset_server() (aiomas.local_queue.LocalQueue method)

 	

 	utcnow() (aiomas.clocks.BaseClock method)

V

 	

 	validate_aid() (aiomas.agent.Container method)

W

 	

 	wait_closed() (aiomas.local_queue.LocalQueueServer method)

 	

 	write() (aiomas.channel.ChannelProtocol method)

 	

 	(aiomas.local_queue.LocalQueueTransport method)

 Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

 _modules/aiomas/codecs.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.codecs

"""
This package imports the codecs that can be used for de- and encoding incoming
and outgoing messages:

- :class:`JSON` uses `JSON <http://www.json.org/>`_
- :class:`MsgPack` uses `msgpack <http://msgpack.org/>`_
- :class:`MsgPackBlosc` uses `msgpack <http://msgpack.org/>`_ and
 `Blosc <http://blosc.org/>`_

All codecs should implement the base class :class:`Codec`.

"""
import inspect
import json
import sys

try:
 import blosc
except ImportError:
 blosc = None
try:
 import msgpack
except ImportError:
 msgpack = None

from .exceptions import SerializationError

__all__ = ['serializable', 'Codec', 'JSON', 'MsgPack', 'MsgPackBlosc']

TYPESIZE = 8 if sys.maxsize > 2**32 else 4

[docs]def serializable(cls=None, repr=True):
 """Class decorator that makes the decorated class serializable by
 :mod:`aiomas.codecs`.

 The decorator tries to extract all arguments to the class’ ``__init__()``.
 That means, the arguments must be available as attributes with the same
 name.

 The decorator adds the following methods to the decorated class:

 - ``__asdict__()``: Returns a dict with all __init__ parameters

 - ``__fromdict__(dict)``: Creates a new class instance from *dict*

 - ``__serializer__()``: Returns a tuple with args for
 :meth:`Codec.add_serializer()`

 - ``__repr__()``: Returns a generic instance representation. Adding this
 method can be deactivated by passing ``repr=False`` to the decorator.

 Example:

 .. code-block:: python

 >>> import aiomas.codecs
 >>>
 >>> @aiomas.codecs.serializable
 ... class A:
 ... def __init__(self, x, y):
 ... self.x = x
 ... self._y = y
 ...
 ... @property
 ... def y(self):
 ... return self._y
 >>>
 >>> codec = aiomas.codecs.JSON()
 >>> codec.add_serializer(*A.__serializer__())
 >>> a = codec.decode(codec.encode(A(1, 2)))
 >>> a
 A(x=1, y=2)

 """
 def wrap(cls):
 attrs = [a for a in inspect.signature(cls).parameters]

 def __asdict__(self):
 return {a: getattr(self, a) for a in attrs}

 @classmethod
 def __fromdict__(cls, attrs):
 return cls(**attrs)

 def __repr__(self):
 args = ('%s=%r' % (a, getattr(self, a)) for a in attrs)
 return '%s(%s)' % (self.__class__.__name__, ', '.join(args))

 @classmethod
 def __serializer__(cls):
 return (cls, cls.__asdict__, cls.__fromdict__)

 cls.__asdict__ = __asdict__
 cls.__fromdict__ = __fromdict__
 cls.__serializer__ = __serializer__
 if repr:
 cls.__repr__ = __repr__

 return cls

 # The type of "cls" depends on the usage of the decorator. It's a class if
 # it's used as `@serializable` but ``None`` if used as `@serializable()`.
 if cls is None:
 return wrap
 else:
 return wrap(cls)

[docs]class Codec:
 """Base class for all Codecs.

 Subclasses must implement :meth:`encode()` and :meth:`decode()`.

 """
 def __init__(self):
 self._serializers = {}
 self._deserializers = {}

 def __str__(self):
 return '%s[%s]' % (self.__class__.__name__,
 ', '.join(s.__name__ for s in self._serializers))

[docs] def encode(self, data):
 """Encode the given *data* and return a :class:`bytes` object."""
 raise NotImplementedError

[docs] def decode(self, data):
 """Decode *data* from :class:`bytes` to the original data structure."""
 raise NotImplementedError

[docs] def add_serializer(self, type, serialize, deserialize):
 """Add methods to *serialize* and *deserialize* objects typed *type*.

 This can be used to de-/encode objects that the codec otherwise
 couldn't encode.

 serialize will receive the unencoded object and needs to return
 an encodable serialization of it.

 deserialize will receive an objects representation and should return
 an instance of the original object.

 """
 if type in self._serializers:
 raise ValueError('There is already a serializer for type "%s"' %
 type)
 typeid = len(self._serializers)
 self._serializers[type] = (typeid, serialize)
 self._deserializers[typeid] = deserialize

[docs] def serialize_obj(self, obj):
 """Serialize *obj* to something that the codec can encode."""
 orig_type = otype = type(obj)
 if otype not in self._serializers:
 # Fallback to a generic serializer (if available)
 otype = object

 try:
 typeid, serialize = self._serializers[otype]
 except KeyError:
 raise SerializationError('No serializer found for type "%s"' %
 orig_type) from None

 try:
 return {'__type__': (typeid, serialize(obj))}
 except Exception as e:
 raise SerializationError('Could not serialize object "%r": %s' %
 (obj, e)) from e

[docs] def deserialize_obj(self, obj_repr):
 """Deserialize the original object from *obj_repr*."""
 # This method is called for *all* dicts so we have to check if it
 # contains a desrializable type.
 if '__type__' in obj_repr:
 typeid, data = obj_repr['__type__']
 obj_repr = self._deserializers[typeid](data)
 return obj_repr

[docs]class JSON(Codec):
 """A :class:`Codec` that uses *JSON* to encode and decode messages."""

 def encode(self, data):
 return json.dumps(data, default=self.serialize_obj).encode()

 def decode(self, data):
 return json.loads(data.decode(), object_hook=self.deserialize_obj)

[docs]class MsgPack(Codec):
 """A :class:`Codec` that uses *msgpack* to encode and decode messages."""
 def __init__(self):
 if msgpack is None:
 msg = ('Please install "msgpack-python" to use the %s codec: '
 'pip install -U aiomas[mp]' % self.__class__.__name__)
 raise ImportError(msg)
 super().__init__()

 def encode(self, data):
 return msgpack.packb(
 data, default=self.serialize_obj, use_bin_type=True)

 def decode(self, data):
 return msgpack.unpackb(data,
 object_hook=self.deserialize_obj,
 use_list=False,
 encoding='utf-8')

[docs]class MsgPackBlosc(Codec):
 """A :class:`Codec` that uses *msgpack* to encode and decode messages and
 blosc to compress them."""
 def __init__(self):
 if msgpack is None or blosc is None:
 msg = ('Please install "msgpack-python" and "blosc" to use the %s '
 'codec: pip install -U aiomas[mpb]' %
 self.__class__.__name__)
 raise ImportError(msg)
 super().__init__()

 def encode(self, data):
 return blosc.compress(msgpack.packb(
 data, default=self.serialize_obj, use_bin_type=True), TYPESIZE)

 def decode(self, data):
 return msgpack.unpackb(blosc.decompress(bytes(data)),
 object_hook=self.deserialize_obj,
 use_list=False,
 encoding='utf-8')

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/agent.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.agent

"""
This module implements the base class for agents (:class:`Agent`) and
containers for agents (:class:`Container`).

Every agent must live in a container. A container can contain one ore more
agents. Containers are responsible for making connections to other containers
and agents. They also provide a factory function for spawning new agent
instances and registering them with the container.

Thus, the :class:`Agent` base class is very light-weight. It only has a name,
a reference to its container and an RPC router (see :mod:`aiomas.rpc`).

"""
import asyncio
import collections
import weakref
import socket
import ssl as sslmod

from . import channel, clocks, local_queue, rpc, util

__all__ = ['SSLCerts', 'Container', 'Agent']

PROTOCOLS = {
 'tcp', # TCP sockets
 'ipc', # Inter Process Communication with Unix domain sockets
 'local', # LocalQueue transport
}

SSLCerts = collections.namedtuple('SSLCerts', 'cafile, certfile, keyfile')
""":func:`~collections.namedtuple` storing the names of a CA file, a
certificate file and the associated private key file.

See also :func:`aiomas.util.make_ssl_server_context()` and
:func:`aiomas.util.make_ssl_client_context()`.

"""

def _get_base_url(addr):
 # Get base URL for agents (tcp or ipc)
 if type(addr) is tuple:
 host, port = addr
 if host in [None, '', '::', '0.0.0.0']:
 host = socket.getfqdn()
 base_url = '%s://%s:%s/' % ('tcp', host, port)
 elif isinstance(addr, local_queue.LocalQueue):
 base_url = 'local://%s/' % addr.queue_id
 else:
 base_url = '%s://[%s]/' % ('ipc', addr)

 return base_url

def _make_ssl_contexts(ssl):
 """Derive and return a tuple *(Server SSLContext, Client SSLContext)* from
 ssl.

 ssl may either be a :class:`SSLCerts` instance or a tuple of two
 :class:`ssl.SSLContext` instances.

 In other cases, return ``(None, None)``.

 """
 if type(ssl) is SSLCerts:
 ssl_server_ctx = util.make_ssl_server_context(**ssl._asdict())
 ssl_client_ctx = util.make_ssl_client_context(**ssl._asdict())
 elif type(ssl) is tuple:
 if (len(ssl) != 2 or
 type(ssl[0]) is not sslmod.SSLContext or
 type(ssl[1]) is not sslmod.SSLContext):
 raise TypeError('"ssl" must contain two "ssl.SSLContext" '
 'instances; one for the server and one for '
 'the client.')
 ssl_server_ctx = ssl[0]
 ssl_client_ctx = ssl[1]
 else:
 ssl_server_ctx = None
 ssl_client_ctx = None

 return ssl_server_ctx, ssl_client_ctx

[docs]class Container:
 """Container for agents.

 You should not instantiate containers directly but use the :meth:`create()`
 method/coroutine instead. This makes sure that the container's server
 socket is fully operational when it is created.

 The container allows its agents to create connections to other agents (via
 :meth:`connect()`).

 In order to destroy a container and close all of its sockets, call
 :meth:`shutdown()`.

 """
 router = rpc.Service(['agents'])

 @classmethod
[docs] def create(cls, addr, *, clock=None, codec=None, extra_serializers=None,
 ssl=None, as_coro=False):
 """Instantiate a container and create a server socket for it.

 This function is a classmethod and `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 :param addr:
 is the address that the server socket is bound to. It may be
 a ``(host, port)`` tuple for a TCP socket, a path for a Unix domain
 socket, or a *LocalQueue* instance as returned by the
 :func:`aiomas.local_queue.get_queue()` function.

 TCP sockets

 If ``host`` is ``'0.0.0.0'`` or ``'::'``, the server is bound to
 all available IPv4 *or* IPv6 interfaces respectively. If ``host``
 is ``None`` or ``''``, the server is bound to all available IPv4
 and IPv6 interfaces. In these cases, the machine's FQDN (see
 :func:`socket.getfqdn()`) should be resolvable and point to that
 machine as it will be used for the agent's addresses.

 If ``host`` is a simple (IPv4 or IPv6) IP address, it will be used
 for the agent's addresses as is.

 LocalQueue

 In contrast to TCP, multiple LocalQueue connections between
 containers (within the same thread and OS process) send and receive
 message in a deterministic order, which is useful for testing and
 debugging.

 LocalQueue instances should be retrieved via the
 :func:`aiomas.local_queue.get_queue()` function (which also
 available as ``aiomas.get_queue()``). This function always
 returns the same instance for a given queue ID.

 :param clock:
 can be an instance of :class:`~aiomas.clocks.BaseClock`.

 It allows you to decouple the container's (and thus, its agent's)
 time from the system clock. This makes it easier to integrate your
 system with other simulators that may provide a clock for you or to
 let your MAS run as fast as possible.

 By default, the real-time :class:`~aiomas.clocks.AsyncioClock` will
 be used.

 :param codec:
 can be a :class:`~aiomas.codecs.Codec` subclass (not an instance!).
 :class:`~aiomas.codecs.JSON` is used by default.

 :param extra_serializers:
 is an optional list of extra serializers for the codec. The list
 entries need to be callables that return a tuple with the arguments
 for :meth:`~aiomas.codecs.Codec.add_serializer()`.

 :param ssl:
 allows you to enable TLS for all incoming and outgoing TCP
 connections. It may either be an :class:`SSLCerts` instance or
 a tuple containing two :class:`~ssl.SSLContext` instances, where
 the first one will be used for the server socket, the second one
 for client sockets.

 :param as_coro:
 must be set to ``True`` if the event loop is already running when
 you call this method. This function then returns a coroutine that
 you need to ``await`` in order to get the container. By default it
 will block until the server has been started and return the
 container.

 :return:
 a fully initialized :class:`Container` instance if *async* is
 ``False`` or else a coroutine returning the instance when it is
 done.

 Invocation examples::

 # Synchronous:
 container = Container.create(...)

 # Asynchronous:
 container = await Container.create(..., as_coro=True)

 """
 base_url = _get_base_url(addr)
 ssl_server_ctx, ssl_client_ctx = _make_ssl_contexts(ssl)

 # Get default codec and clock if none were provided
 if codec is None:
 codec = channel.DEFAULT_CODEC
 if clock is None:
 clock = clocks.AsyncioClock()

 # Prepend the Arrow date serializer to the list of serializers
 if extra_serializers is None:
 extra_serializers = []
 extra_serializers = [util.arrow_serializer] + extra_serializers

 # Additional keyword arguments for connecting to other containers
 connect_kwargs = {
 'codec': codec,
 'extra_serializers': extra_serializers,
 'ssl': ssl_client_ctx,
 }

 # Actually instantiate the container and start the server socket
 @asyncio.coroutine
 def _start():
 container = cls(base_url, clock, connect_kwargs)
 tcp_server = yield from rpc.start_server(
 addr,
 container,
 client_connected_cb=container._add_to_con_cache,
 codec=codec,
 extra_serializers=extra_serializers,
 ssl=ssl_server_ctx)
 container.set_server(tcp_server)
 return container

 if as_coro:
 return _start()
 else:
 return util.run(_start())

 def __init__(self, base_url, clock, connect_kwargs):
 self._tcp_server = None
 self._rpc_cons = set()
 self._base_url = base_url
 self._clock = clock
 self._connect_kwargs = connect_kwargs

 # The agents managed by this container.
 # The agents' routers are subrouters of the container's root router.
 self.agents = rpc.ServiceDict()

 # Caches
 self._connections_out_futs = {} # Futures for outgoing connections
 self._connections_out = {} # RPC connections to containers by address
 self._remote_agent_futs = {} # Futures for remote agent validation
 self._remote_agents = {} # Validated remote agents by connection

 def __str__(self):
 return '%s(%r)' % (self.__class__.__name__, self._base_url)

 @property
 def clock(self):
 """The clock of the container. Instance of
 :class:`aiomas.clocks.BaseClock`."""
 return self._clock

 def set_server(self, server):
 if self._tcp_server is not None:
 raise RuntimeError('Server already set.')
 self._tcp_server = server

 @asyncio.coroutine
[docs] def connect(self, url, timeout=0):
 """Connect to the argent available at *url* and return a proxy to it.

 url is a string ``<protocol>://<addr>//<agent-id>`` (e.g.,
 ``'tcp://localhost:5555/0'``).

 With a *timeout* of 0 (the default), there will only be one connection
 attempt before an error is raised (:exc:`ConnectionRefusedError` for
 TCP sockets and LocalQueue, :exc:`FileNotFoundError` for Unix domain
 sockets). If you set *timeout* to a number > 0 or ``None``, this
 function will try to connect repeatedly for at most that many seconds
 (or indefinitely) before an error is raised. Use this if the remote
 agent's container may not yet exist.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 addr, aid = self._parse_url(url)

 rpc_con = yield from self._open_connection(addr, timeout)
 remote_agent = yield from self._validate_aid(aid, rpc_con, addr, url)

 return remote_agent

[docs] def shutdown(self, as_coro=False):
 """Close the container's server socket and the RPC services for all
 outgoing TCP connections.

 If *async* is left to ``False``, this method calls
 :meth:`asyncio.BaseEventLoop.run_until_complete()` in order to wait
 until all sockets are closed.

 Set *async* to ``True`` if the event loop is already running (e.g.,
 because you are in a coroutine). The return value then is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_ that
 you need to ``await`` in order to actually shut the container down::

 await container.shutdown(as_coro=True)

 """
 @asyncio.coroutine
 def _shutdown():
 # Close all outgoing connections
 futs = []
 for con in self._connections_out.values():
 futs.append(con.close())
 yield from asyncio.gather(*futs)

 if self._tcp_server:
 # Request closing the server socket and cancel the services
 self._tcp_server.close()
 for con in self._rpc_cons:
 con.service.cancel()

 # Wait for server and services to actually terminate
 yield from asyncio.gather(self._tcp_server.wait_closed(),
 *[c.service for c in self._rpc_cons])

 self._tcp_server = None
 self._rpc_cons = None

 if as_coro:
 return _shutdown()
 else:
 util.run(_shutdown())

 @router.expose
[docs] def validate_aid(self, aid):
 """Return the class name for the agent represented by *aid* if it
 exists or ``None``."""
 agents = self.agents.dict
 if aid in agents:
 return agents[aid].__class__.__name__

 def _add_to_con_cache(self, rpc):
 """Client-connected-callback for the server socket that adds the RPC
 connection *rpc* to the set of connections."""
 self._rpc_cons.add(rpc)

 def _parse_url(self, url):
 """Parse the agent *url* and return a ``((host, port), agent)`` tuple.

 Raise a :exc:`ValueError` if the URL cannot be parsed.

 """
 try:
 proto, addr_aid = url.split('://', 1)
 assert proto in PROTOCOLS, '%s not in %s' % (proto, PROTOCOLS)

 if proto == 'tcp':
 addr, aid = addr_aid.split('/', 1)
 host, port = addr.rsplit(':', 1)
 if host[0] == '[' and host[-1] == ']':
 # IPv6 addresses may be surrounded by []
 host = host[1:-1]
 addr = (host, int(port))

 elif proto == 'ipc':
 assert addr_aid[0] == '['
 addr, aid = addr_aid[1:].split(']/', 1)

 elif proto == 'local':
 queue_id, aid = addr_aid.split('/', 1)
 addr = local_queue.get_queue(queue_id)
 aid = aid

 assert aid, 'No agent ID specified.'

 except (AssertionError, IndexError, ValueError) as e:
 raise ValueError('Cannot parse agent URL "%s": %s' % (url, e))

 return addr, aid

 @asyncio.coroutine
 def _open_connection(self, addr, timeout):
 if addr in self._connections_out:
 # Return cached connection
 rpc_con = self._connections_out[addr]
 elif addr in self._connections_out_futs:
 # Wait for ongoing connection attempt
 rpc_con = yield from self._connections_out_futs[addr]
 else:
 # Open new connection
 fut = asyncio.Future()
 self._connections_out_futs[addr] = fut

 rpc_con = yield from rpc.open_connection(addr,
 rpc_service=self,
 timeout=timeout,
 **self._connect_kwargs)

 # Put connection into the cache
 self._rpc_cons.add(rpc_con)
 self._connections_out[addr] = rpc_con

 # Trigger future and remove it from the cache
 fut.set_result(rpc_con)
 self._connections_out_futs.pop(addr)

 # Initialize caches for remote agents
 self._remote_agents[rpc_con] = weakref.WeakValueDictionary()
 self._remote_agent_futs[rpc_con] = {}

 return rpc_con

 @asyncio.coroutine
 def _validate_aid(self, aid, rpc_con, addr, url):
 remote_agents = self._remote_agents[rpc_con]
 remote_agent_futs = self._remote_agent_futs[rpc_con]

 if aid in remote_agents:
 remote_agent = remote_agents[aid]
 elif aid in remote_agent_futs:
 remote_agent = yield from remote_agent_futs[aid]
 else:
 fut = asyncio.Future()
 remote_agent_futs[aid] = fut

 remote_type = yield from rpc_con.remote.validate_aid(aid)
 if remote_type is None:
 raise ConnectionError('Agent "%s" does not exist in '
 'Container(%r)' % (aid, addr))
 remote_agent = getattr(rpc_con.remote.agents, aid)
 remote_agent._str = '%sProxy(%r)' % (remote_type, url)

 remote_agents[aid] = remote_agent
 fut.set_result(remote_agent)
 remote_agent_futs.pop(aid)

 return remote_agent

 def _register(self, agent):
 """Register *agent* with the container."""
 aid = str(len(self.agents.dict))
 url = self._base_url + aid
 self.agents.dict[aid] = agent
 self.agents.router.set_sub_router(agent.router, aid)
 return url

[docs]class Agent:
 """Base class for all agents."""

 router = rpc.Service()
 """Descriptor that creates an RPC :class:`~aiomas.rpc.Router` for every
 agent instance.

 You can override this in a sub-class if you need to. (Usually, you don't.)

 """
 def __init__(self, container):
 if not isinstance(container, Container):
 raise TypeError('"container" must be a "Container" instance but '
 'is %s' % container)
 addr = container._register(self)
 self.__container = container
 self.__addr = addr
 self.__name = '%s(%r)' % (self.__class__.__name__, addr)

 def __str__(self):
 return self.__name

 @property
 def container(self):
 """The :class:`Container` that the agent lives in."""
 return self.__container

 @property
 def addr(self):
 """The agent's address."""
 return self.__addr

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/rpc.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.rpc

"""
This module implements remote procedure calls (RPC) on top of request-reply
channels (see :mod:`aiomas.channel`).

RPC connections are represented by instances of :class:`RpcClient` (one for
each side of a :class:`aiomas.channel.Channel`). They provide access to the
functions served by the peer via :class:`Proxy` instances. Optionally, they
can provide their own RPC service so that the peer can make calls as well.

An RPC service is an object with a ``router`` attribute which is an instance of
:class:`Router`. A router resolves paths requested by the peer. It can also
handle sub-routers (which allows you to build hierarchies for nested calls) and
is able to perform a reverse-lookup of a router (mapping a fuction to its
path).

Routers an be attached to both, classes and dictionaries with functions.
Dictionaires need to be wrapped with a :class:`ServiceDict`. Classes need to
have a :class:`Service` class attribute named ``router``. :class:`Service` is
a descriptor which creates a :class:`Router` for every instance of that class.

Functions that should be callable from the remote side must be decorated with
:func:`expose()`; :func:`Router.expose()` and :func:`Service.expose()` are
aliases for it.

"""
from asyncio import coroutine
import asyncio
import logging
import weakref

from . import channel, exceptions

__all__ = [
 'open_connection', 'start_server', 'rpc_service_process', 'expose',
 '_handle_request',
 'Service', 'ServiceDict', 'Router', 'RpcClient', 'Proxy',
]

logger = logging.getLogger(__name__)

@coroutine
[docs]def open_connection(addr, *, rpc_service=None, **kwds):
 """Return an :class:`RpcClient` connected to *addr*.

 This is a convenience wrapper for :meth:`aiomas.channel.open_connection()`.
 All keyword arguments *(kwds)* are forwared to it.

 You can optionally pass a *rpc_service* to allow the peer to call back to
 us.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 if rpc_service is not None and not _is_rpc_service(rpc_service):
 raise ValueError('"%s" is not a valid RPC service.' % rpc_service)

 c = yield from channel.open_connection(addr, **kwds)
 return RpcClient(c, rpc_service)

@coroutine
[docs]def start_server(addr, rpc_service, client_connected_cb=None, **kwds):
 """Start a server socket on *host:port* and create an RPC service with
 the provided *handler* for each new client.

 This is a convenience wrapper for :meth:`aiomas.channel.start_server()`.
 All keyword arguments *(kwds)* are forwared to it.

 rpc_service must be an RPC service (an object with a ``router`` attribute
 that is an instance of :class:`Router`).

 client_connected_cb is an optional callback that will be called with
 with the :class:`RpcClient` instance for each new connection.

 Raise a :exc:`ValueError` if *handler* is not decorated properly.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 if not _is_rpc_service(rpc_service):
 raise ValueError('"%s" is not a valid RPC service.' % rpc_service)

 def fac(channel):
 """Create an RPC client for each new connection and call the
 client_connected_cb if there is one."""
 rpc_cli = RpcClient(channel, rpc_service)
 if client_connected_cb:
 client_connected_cb(rpc_cli)
 return rpc_cli

 server = yield from channel.start_server(addr, fac, **kwds)
 return server

@coroutine
[docs]def rpc_service_process(rpc_client, router, channel):
 """RPC service process for a connection *rpc_lient*.

 Serves the functions provided by the :class:`Router` *router* via the
 :class:`~aiomas.channel.Channel` *channel*.

 Forward errors raised by the handler to the caller.

 Stop running when the connection closes.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 loop = channel._loop

 try:
 while True:
 # Wait for a request
 request = yield from channel.recv()

 # Dispatch handling of the request to a sub task to make dead-locks
 # less likely when multiple agents share the same connection.
 asyncio.async(_handle_request(request, loop, router), loop=loop)

 except asyncio.CancelledError:
 pass

 except ConnectionError as ce:
 rpc_client._connection_reset(ce)

 finally:
 try:
 yield from channel.close()
 except RuntimeError:
 # May happen when the loop is already closed
 pass

@coroutine
def _handle_request(request, loop, router):
 """Handle the *request*.

 Resolve the path, execute the corresponding message and set the result
 or exception.

 """
 path, args, kwargs = request.content
 # logger.debug('Request: [%s, %s, %s]' % (path, args, kwargs))

 # Resolve requested path
 try:
 func = router.resolve(path)
 except LookupError as exc:
 yield from request.fail(exc)
 return

 # Call requested function
 try:
 res = func(*args, **kwargs)
 if asyncio.iscoroutine(res):
 res = yield from asyncio.async(res, loop=loop)
 reply = request.reply
 except Exception as e:
 reply = request.fail
 res = e

 try:
 yield from reply(res)
 except ConnectionResetError:
 pass

def _is_rpc_service(obj):
 if not hasattr(obj, 'router'):
 return False

 if not isinstance(obj.router, Router):
 return False

 return True

[docs]def expose(func):
 """Decorator that enables RPC access to the decorated function.

 func will not be wrapped but only gain an ``__rpc__`` attribute.

 """
 if not hasattr(func, '__call__'):
 raise ValueError('"%s" is not callable.' % func)

 func.__rpc__ = True
 return func

[docs]class ServiceDict:
 """Wrapper for dicts so that they can be used as RPC routers."""
 __rpc__ = True

 def __init__(self, dict=None):
 self.dict = {} if dict is None else dict
 """The wrapped dict."""

 self.router = Router(self)
 """The dict's router instance."""

 self.__getrpc__ = self.dict.__getitem__
 for key, val in self.dict.items():
 # Iterate over all entries and look for objects with routers.
 # Set *router* as parent to these sub-routers.
 if hasattr(val, 'router'):
 Router.set_sub_router(self.router, val.router, key)

[docs]class Service:
 """A Data Descriptor that creates a new :class:`Router` instance for each
 class instance to which it is set.

 The attribute name for the Service should always be *router*::

 class Spam:
 router = aiomas.rpc.Service()

 You can optionally pass a list with the attribute names of classes with
 sub-routers. This required to build hierarchies of routers, e.g.::

 class Eggs:
 router = aiomas.rpc.Service()

 class Spam:
 router = aiomas.rpc.Service(['eggs'])

 def __init__(self):
 self.eggs = Eggs() # Instance with a sub-router

 """
 def __init__(self, sub_routers=()):
 self._sub_router_names = sub_routers

 def __set__(self, instance, value):
 """Raise :exc:`AttributeError` to forbid overwriting this attribute."""
 raise AttributeError('Read-only attribute.')

 def __get__(self, instance, cls):
 """If accessed from the class, return this Service instance. If
 accessed from an *instance*, return the :class:`Router` instance for
 instance.

 """
 if instance is None:
 return self

 if 'router' not in instance.__dict__:
 # Create new Router for "instance" and add all sub-router:
 router = instance.__dict__.setdefault('router', Router(instance))
 for name in self._sub_router_names:
 router.add(name)

 return instance.__dict__['router']

 expose = staticmethod(expose)
 """Alias for :func:`expose()`."""

[docs]class Router:
 """The Router resolves paths to functions provided by their object *obj*
 (or its children). It can also perform a reverse lookup to get the path
 of the router (and the router's *obj*).

 The *obj* can be a class, an instance or a dict.

 """
 def __init__(self, obj):
 # Mark *obj* as node in the RPC hierarchy and and create an alias
 # for accessing its child elements.
 obj.__rpc__ = True
 obj.__getrpc__ = obj.__getattribute__

 self.obj = obj #: The object to which this router belongs to.
 self.name = '' #: The name of the router (empty for root routers).
 self.parent = None #: The parent router or ``None`` for root routers.

 self._cache = {} # Maps already resolved paths to functions

 @property
 def path(self):
 """The path to this router (without trailing slash)."""
 router = self
 parts = []
 while router.parent is not None:
 # We go from child to root here
 parts.append(router.name)
 router = router.parent

 return '/'.join(reversed(parts)) # Reverse to get root first

[docs] def resolve(self, path):
 """Resolve *path* and return the corresponding function.

 path is a string with path components separated by */* (without
 trailing slash).

 Raise a :exc:`LookupError` if no handler function can be found for
 path or if the function is not exposed (see :func:`expose()`).

 """
 try:
 obj = self._cache[path]
 except KeyError:
 parent = None
 obj = self.obj
 parts = path.split('/')
 for i, name in enumerate(parts):
 try:
 parent, obj = obj, obj.__getrpc__(name)
 except (AttributeError, KeyError):
 raise LookupError('Name "%s" not found in "%s"' %
 (name, '/'.join(parts[:i]))) from None

 if not hasattr(obj, '__rpc__'):
 cls = parent.__class__
 raise LookupError('"%s.%s.%s" is not exposed' %
 (cls.__module__, cls.__qualname__, name))

 self._cache[path] = obj

 return obj

 expose = staticmethod(expose)
 """Alias for :func:`expose()`."""

[docs] def add(self, name):
 """Add the sub-router *name* (stored at ``self.obj.<name>``) to this
 router.

 Convenience wrapper for :meth:`set_sub_router`.

 """
 router = getattr(self.obj, name).router
 self.set_sub_router(router, name)

[docs] def set_sub_router(self, router, name):
 """Set *self* as parent for the *router* named *name*."""
 if type(router) is not Router:
 raise ValueError('"%s" is not a valid router.' % router)
 if router.parent is not None:
 raise ValueError('"%s" is already a sub service of "%s"' %
 (router.obj, router.parent.obj))
 router.name = name
 router.parent = self

[docs]class RpcClient:
 """The RpcClient provides proxy objects for remote calls via its
 :attr:`remote` attribute.

 channel is a :class:`~aiomas.channel.Channel` instance for communicating
 with the remote side.

 If *rpc_service* is not ``None``, it will also start its own RPC service so
 the peer can call the functions we provide.

 """
 def __init__(self, channel, rpc_service=None):
 self.__channel = channel
 self.__channel.codec.add_serializer(object, self._serialize_obj,
 self._deserialize_obj)
 self.__root_router = None
 self.__service = None
 self.__connection_reset_callback = None

 if rpc_service is not None:
 self.__root_router = rpc_service.router
 self.__service = asyncio.async(
 rpc_service_process(self, rpc_service.router, channel),
 loop=channel._loop)

 @property
 def channel(self):
 """The communication :class:`~aiomas.channel.Channel` of this instance.
 """
 return self.__channel

 @property
 def service(self):
 """The RPC service process for this connection."""
 return self.__service

 @property
 def remote(self):
 """A :class:`Proxy` for remote methods."""
 return Proxy(self.__channel, '')

[docs] def on_connection_reset(self, callback):
 """Add a *callback* that gets called if the peer closes the connection
 and thus causing the :attr:`service` process to abort.

 callback is a callable with a single argument, the exception that the
 :attr:`service` process raises if the connection is reset by the peer.

 If this method is called multiple times, override the current callback
 with the new one. If *callback* is ``None``, delete the current
 callback.

 Raise a :exc:`ValueError` if *callback* is neither callable nor
 ``None``.

 Raise a :exc:`RuntimeError` if this instance has not service task
 running.

 """
 if self.__service is None:
 raise RuntimeError('This %s instance has no RPC service running.' %
 self.__class__.__name__)

 if not (callback is None or hasattr(callback, '__call__')):
 raise ValueError('%r must be "None" or callable but is neither' %
 callback)

 self.__connection_reset_callback = callback

 @coroutine
[docs] def close(self):
 """`Coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_ that
 closes the connection and waits for all sub tasks to finish."""
 self.close()
 yield from self.__channel.close()
 if self.__service is not None:
 if not self.__service.done():
 self.__service.cancel()
 yield from self.__service

 def _connection_reset(self, exc):
 """Callback that is executed when a :exc:`ConnectionError` is raised
 within :attr:`service`.

 Using the *connection reset callback* (also see
 :meth:`on_connection_reset()`), the user can check if the connection
 reset was intentional or an error and react accordingly.

 """
 if self.__connection_reset_callback is not None:
 self.__connection_reset_callback(exc)

 def _serialize_obj(self, obj):
 """Fallback serializer for all objects for which no other serializer
 was found.

 It will only serialize valid RPC services and only if "self" has a
 service process running and the RPC service is associated with it.

 Else, raise a :exc:`SerializationError`.

 """
 # Check if "obj" is a valid RPC service

 if not _is_rpc_service(obj):
 raise exceptions.SerializationError('No serializer found for type '
 '"%s"' % type(obj))

 # Check if we have a service running:
 if self.__root_router is None:
 raise exceptions.SerializationError(
 'No RPC service running for this side of the connection. '
 'Cannot send serice proxy.')

 # Check if "obj.router" is self.__root_router or one of its children
 router = obj.router
 while router.parent is not None:
 router = router.parent
 if router is not self.__root_router:
 raise exceptions.SerializationError('The RPC service "%r" is not '
 'exposed for this connection' %
 obj)

 return obj.router.path

 def _deserialize_obj(self, path):
 return Proxy(self.__channel, path)

[docs]class Proxy:
 """Proxy object for remote objects and functions."""
 def __init__(self, channel, path):
 self._channel = channel
 self._path = path
 self._cache = weakref.WeakValueDictionary()
 self._str = None

 def __repr__(self):
 return '<%s.%s at 0x%x>' % (self.__module__, self, id(self))

 def __str__(self):
 return self._str if self._str else '%s(%r, %r)' % (
 self.__class__.__name__,
 self._channel.get_extra_info('peername')[:2],
 self._path)

[docs] def __getattr__(self, name):
 """Return a new proxy for *name*."""
 if name in self._cache:
 proxy = self._cache[name]
 else:
 path = name if not self._path else self._path + '/' + name
 proxy = self.__class__(self._channel, path)
 self._cache[name] = proxy

 return proxy

[docs] def __call__(self, *args, **kwargs):
 """Call the remote method represented by this proxy and return its
 result.

 The result is a future, so you need to ``yield from`` it in order to
 get the actual return value (or exception).

 """
 if not self._path:
 raise AttributeError('No RPC function name specified.')
 return self._channel.send((self._path, args, kwargs))

 def __eq__(self, other):
 return self._channel is other._channel and self._path == other._path

 def __hash__(self):
 return hash(self._channel) + hash(self._path)

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/local_queue.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.local_queue

"""
The local queue transport roughly mimics a normal TCP transport, but it sends
and receives messages via two :class:`asyncio.Queue` instances.

Its purpose is to aid the development and debugging of complex networking
algorithms and distributed or multi-agent systems. In contrast to normal
network transports, messages send via the :class:`LocalQueueTransport` will
always arrive in a deterministic order [#]_.

This transport does *not* work across multiple processes and is *not* thread
safe, so it should only be used within a single thread and process.

The easiest way to use it is to create a :class:`LocalQueue` instance via the
:func:`get_queue()` function and pass it to
:func:`aiomas.channel.start_server()`/:func:`aiomas.channel.open_connection()`
or :meth:`aiomas.agent.Container.create()` as *addr* argument.

.. [#] Actually, message sent via a single TCP connection also arrive at a
 deterministic order (this is a property of the TCP/IP protocol). So
 the LocalQueue transport won't give you any benefits in this case.

 However, if you have multiple connections to the same server and send
 message through them in parallel, it's no longer deterministic in which
 order the messages arrive from the different connections. In this case,
 the LocalQueue transport can help you.

"""
import asyncio

__all__ = ['get_queue', 'clear_queue_cache',
 'create_connection', 'create_server',
 'LocalQueue', 'LocalQueueServer', 'LocalQueueTransport']

CLOSE_QUEUE = object()
_queues = {}

[docs]def get_queue(queue_id):
 """Return a :class:`~aiomas.local_queue.LocalQueue` instance for the given
 queue_id.

 If no instance is cached yet, create a new one.

 Queue IDs must be strings and must not contain the ``/`` character. Raise
 a :exc:`ValueError` if these rules are violated.

 """
 if not isinstance(queue_id, str):
 raise ValueError('Queue ID must be "str" not "%s"' % type(queue_id))

 if '/' in queue_id:
 raise ValueError('"/" not allowed in queue ID (%r)' % queue_id)

 return _queues.setdefault(queue_id, LocalQueue(queue_id))

[docs]def clear_queue_cache():
 """Clear the global queue cache."""
 _queues.clear()

@asyncio.coroutine
[docs]def create_connection(protocol_factory, lq, *, loop=None, **kwds):
 """Connect to a :class:`LocalQueue` *lq*.

 The *protocol_factory* must be a callable returning a `protocol
 <https://docs.python.org/3/library/asyncio-protocol.html>`_ instance.

 Before a connection to *lq* can be made, a server must
 be started for this instance (see :func:`create_server()`).

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_ which
 will try to establish the connection in the background. When successful,
 the coroutine returns a (transport, protocol) pair.

 """
 if loop is None:
 loop = asyncio.get_event_loop()

 client_server_q = asyncio.Queue(loop=loop)
 server_client_q = asyncio.Queue(loop=loop)

 lq.new_connection(sendq=server_client_q, recvq=client_server_q)

 p = protocol_factory()
 t = LocalQueueTransport(lq, sendq=client_server_q, recvq=server_client_q,
 protocol=p)
 p.connection_made(t)
 return (t, p)

@asyncio.coroutine
[docs]def create_server(protocol_factory, lq, **kwds):
 """Create a :class:`LocalQueue` server bound to *lq*.

 The *protocol_factory* must be a callable returning a `protocol
 <https://docs.python.org/3/library/asyncio-protocol.html>`_ instance.

 Return a :class:`LocalQueueServer` instance. That instance is also set
 as :attr:`~LocalQueue.server` for *lq*.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 return LocalQueueServer(protocol_factory, lq)

[docs]class LocalQueue:
 """An instance of this class serves as transport description when creating
 a server or connection.

 The functions :func:`create_server()` and :func:`create_connection()` both
 require an instance of this class. Alternatively, instances of this class
 can be passed as *addr* argument to :func:`aiomas.channel.start_server()`
 and :func:`aiomas.channel.open_connection()`

 A server needs to be started before any connections can be made.

 """
 def __init__(self, queue_id):
 self._queue_id = queue_id
 self._server = None

 def __repr__(self):
 return '<%s.%s object %r at 0x%x>' % (self.__class__.__module__,
 self.__class__.__name__,
 self._queue_id,
 id(self))

 def __str__(self):
 return '%s(%r)' % (self.__class__.__name__, self._queue_id)

 @property
 def queue_id(self):
 """The queue's ID."""
 return self._queue_id

 @property
 def server(self):
 """The :class:`LocalQueueServer` instance that was bound to this
 instance or ``None`` if no server has yet been started.

 """
 return self._server

[docs] def set_server(self, server):
 """Set a :class:`LocalQueueServer` instance.

 Raise a :exc:`RuntimeError` if a server has already been bound to
 this instance.

 This method is called by :func:`create_server()`.

 """
 if self._server is not None:
 raise RuntimeError('Server is already set.')

 self._server = server

[docs] def unset_server(self):
 """Unset the server from this instance.

 This method is called when the server is closed (see
 :class:`LocalQueueServer.close()`).

 """
 self._server = None

[docs] def new_connection(self, sendq, recvq):
 """Create a connection endpoint on the server side.

 This method is called by :func:`create_connection()`.

 sendq and *recvq* are the queues used for sending and receiving
 messages to and from the client.

 """
 if self._server is None:
 raise ConnectionRefusedError('No server started for this local '
 'queue instance.')
 self._server.new_connection(sendq, recvq)

[docs]class LocalQueueServer(asyncio.AbstractServer):
 """Implements ``asyncio.events.AbstractServer``. An instance of this class
 is returned by :func:`create_server()`.

 lq is the :class:`LocalQueue` instance that this server was bound to.

 protocol_factory is a callable that is called for each new client
 connection in order to create a new protocol instance.

 """
 def __init__(self, protocol_factory, lq):
 self._protocol_factory = protocol_factory
 self._lq = lq
 lq.set_server(self)

 @property
 def lq(self):
 """The :class:`LocalQueue` the server is bound to."""
 return self._lq

[docs] def new_connection(self, sendq, recvq):
 """Create a new protocol and transport instance.

 Call the *protocol factory*, create a new :class:`LocalQueueTransport`
 with *sendq* and *recvq* and wire them together.

 Called by :func:`create_connection()` via
 :meth:`LocalQueue.new_connection()`.

 """
 p = self._protocol_factory()
 t = LocalQueueTransport(self._lq, sendq, recvq, p)
 p.connection_made(t)

[docs] def close(self):
 """Close the server and unset this instance from the associated
 :class:`LocalQueue` instance.

 """
 self._lq.unset_server()

 @asyncio.coroutine
[docs] def wait_closed(self):
 """Immediately return (there's nothing to wait for).

 This method is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 return

[docs]class LocalQueueTransport(asyncio.Transport):
 """Implements ``asyncio.transports.Transport``.

 A *LocalQueueTransport* has to asynchronous queues (instances of
 :class:`asyncio.Queue`) – one for sending messages to the other side
 and one for receiving messages from it.

 """
 def __init__(self, lq, sendq, recvq, protocol):
 super().__init__(extra={'peername': str(lq)})
 self._sendq = sendq
 self._recvq = recvq
 self._protocol = protocol
 self._wait_read = None
 self._task_recv = asyncio.async(self._recv())

 @asyncio.coroutine
 def _recv(self):
 try:
 while self._recvq is not None:
 if self._wait_read is not None:
 yield from self._wait_read
 data = yield from self._recvq.get()
 if data is CLOSE_QUEUE:
 self.close()
 break
 self._protocol.data_received(data)
 except asyncio.CancelledError:
 return

[docs] def close(self):
 """Close the transport.

 Buffered data will be flushed asynchronously. No more data will be
 received. After all buffered data is flushed, the protocol's
 ``connection_lost()`` method will (eventually) be called with ``None``
 as its argument.

 """
 if self._sendq is not None:
 sendq = self._sendq
 self._task_recv.cancel()
 self._sendq = None
 self._recvq = None
 sendq.put_nowait(CLOSE_QUEUE)
 self._protocol.connection_lost(None)

[docs] def write(self, data):
 """Write some data bytes to the transport.

 This does not block; it buffers the data and arranges for it to be sent
 out asynchronously.

 """
 self._sendq.put_nowait(data)

[docs] def can_write_eof(self):
 """Return ``False``. This transport does not support ``write_eof()``.
 """
 return False

[docs] def abort(self):
 """Close the transport immediately.

 Buffered data will be lost. No more data will be received. The
 protocol's ``connection_lost()`` method will (eventually) be called
 with ``None`` as its argument.

 """
 self.close()

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/clocks.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.clocks

"""
Clocks to be used with :class:`aiomas.agent.Container`.

All clocks should subclass :class:`BaseClock`. Currently available clock types
are:

- :class:`AsyncioClock`: a real-time clock synchronized with the :mod:`asyncio`
 event loop.

- :class:`ExternalClock`: a clock that can be set by external tasks / processes
 in order to synchronize it with external systems or simulators.

"""
import asyncio
import heapq
import itertools

import arrow

__all__ = ['BaseClock', 'AsyncioClock', 'ExternalClock', 'TimerHandle']

[docs]class BaseClock:
 """Interface for clocks.

 Clocks must at least implement :meth:`time()` and :meth:`utcnow`.

 """

[docs] def time(self):
 """Return the value (in seconds) of a monotonic clock.

 The return value of consecutive calls is guaranteed to be greater or
 equal then the results of previous calls.

 The initial value may not be defined. Don't depend on it.

 """
 raise NotImplementedError()

[docs] def utcnow(self):
 """Return an :class:`arrow.arrow.Arrow` date with the current time in
 UTC."""
 raise NotImplementedError()

[docs] def sleep(self, dt, result=None):
 """Sleep for a period *dt* in seconds. Return an
 :class:`asyncio.Future`.

 If *result* is provided, it will be passed back to the caller when
 the coroutine has finished.

 """
 raise NotImplementedError()

[docs] def sleep_until(self, t, result=None):
 """Sleep until the time *t*. Return an :class:`asyncio.Future`.

 t may either be a number in seconds or an :class:`arrow.arrow.Arrow`
 date.

 If *result* is provided, it will be passed back to the caller when
 the coroutine has finished.

 """
 raise NotImplementedError()

[docs] def call_in(self, dt, func, *args):
 """Schedule the execution of ``func(*args)`` in *dt* seconds and return
 immediately.

 Return an opaque handle which lets you cancel the scheduled call via
 its ``cancel()`` method.

 """
 raise NotImplementedError()

[docs] def call_at(self, t, func, *args):
 """Schedule the execution of ``func(*args)`` at *t* and return
 immediately.

 t may either be a number in seconds or an :class:`arrow.arrow.Arrow`
 date.

 Return an opaque handle which lets you cancel the scheduled call via
 its ``cancel()`` method.

 """
 raise NotImplementedError()

 def _check_date(self, date):
 """Assert that *date* is not in the past and convert it into float if
 it is an :class:`arrow.arrow.Arrow`."""
 if type(date) is arrow.arrow.Arrow:
 t = (date - self.utcnow()).total_seconds() + self.time()
 else:
 t = date
 if t <= self.time():
 raise ValueError('Date "%s" is in the past' % date)
 return t

[docs]class AsyncioClock(BaseClock):
 """:mod:`asyncio` based real-time clock."""
 def __init__(self):
 self._loop = asyncio.get_event_loop()

 def time(self):
 return self._loop.time()

 def utcnow(self):
 return arrow.utcnow()

 def sleep(self, dt, result=None):
 return asyncio.sleep(dt, result)

 def sleep_until(self, t, result=None):
 t = self._check_date(t)
 return asyncio.sleep(t - self.time(), result)

 def call_in(self, dt, func, *args):
 return self._loop.call_later(dt, func, *args)

 def call_at(self, t, task, *args):
 t = self._check_date(t)
 return self._loop.call_at(t, task, *args)

[docs]class ExternalClock(BaseClock):
 """A clock that can be set by external process in order to synchronize
 it with other systems.

 The initial UTC date *utc_start* may either be an
 :class:`arrow.arrow.Arrow` instance or something that
 :meth:`arrow.factory.ArrowFactory.get()` can parse.

 """
 def __init__(self, utc_start, init_time=0):
 if type(utc_start) is not arrow.arrow.Arrow:
 utc_start = arrow.get(utc_start).to(tz='UTC')

 self._time = init_time
 self._utc_start = utc_start

 self._queue = []
 self._eid = itertools.count()

 def time(self):
 return self._time

 def utcnow(self):
 return self._utc_start.replace(seconds=self._time)

 def set_time(self, t):
 if t <= self._time:
 raise ValueError('Time must be > %f but is %f' % (self._time, t))
 self._time = t

 while self._queue and self._queue[0][0] <= t:
 _, _, future, result = heapq.heappop(self._queue)
 if not future.cancelled():
 future.set_result(result)

 def sleep(self, dt, result=None):
 if dt <= 0:
 raise ValueError('dt must be > 0 but is %s' % dt)
 return self.sleep_until(self._time + dt, result)

 def sleep_until(self, t, result=None):
 t = self._check_date(t)
 f = asyncio.Future()
 heapq.heappush(self._queue, (t, next(self._eid), f, result))
 return f

 def call_in(self, dt, func, *args):
 if dt <= 0:
 raise ValueError('dt must be > 0 but is %s' % dt)
 return self.call_at(self._time + dt, func, *args)

 def call_at(self, t, func, *args):
 def cb(fut):
 func(*args)

 t = self._check_date(t)
 f = self.sleep_until(t)
 f.add_done_callback(cb)
 return TimerHandle(f, cb)

[docs]class TimerHandle:
 """This class lets you cancel calls scheduled by :class:`ExternalClock`."""
 def __init__(self, future, callback):
 self._future = future
 self._callback = callback

[docs] def cancel(self):
 """Cancel the scheduled call represented by this handle."""
 self._future.remove_done_callback(self._callback)
 self._future.cancel()

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/util.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.util

"""
This module contains some utility functions.

"""
import asyncio
import importlib
import ssl
import warnings

import arrow

__all__ = [
 'arrow_serializer',
 'async',
 'create_task',
 'run',
 'make_ssl_client_context',
 'make_ssl_server_context',
 'obj_from_str',
]

[docs]def arrow_serializer():
 """Return a serializer for *arrow* dates.

 The return value is an argument tuple for
 :meth:`aiomas.codecs.Codec.add_serializer()`.

 """
 return arrow.Arrow, str, arrow.get

[docs]def create_task(coro_or_future, *, ignore_cancel=True, loop=None):
 """Run :func:`asyncio.ensure_future()` with *coro_or_future* and set
 a callback that instantly raises all exceptions.

 If the argument is a coroutine, a :class:`asyncio.Task` object is returned.
 If the argument is a Future, it is returned directly.

 If *ignore_cancel* is left ``True``, no exception is raised if the task was
 canceled. If you also want to raise the ``CancelledError``, set the flag
 to ``False.``.

 The difference between this function and :func:`asyncio.ensure_future()` is
 the behavior when an exception occurs within the background task:

 Exceptions that occur within the background task are normally only raised
 when you :keyword:`await` that task. If you start a background task that
 runs "forever", you will only see the exception when your program ends and
 you either :keyword:`await` the task or if the task object gets garbage
 collected (in which case the exception is just printed to *stderr*).

 That means that your program can crash and you won't notice it because no
 exception is actually raised or printed. To make development and debugging
 easier, this function adds a callback to the background task that will
 re-raise all exceptions immediately.

 """
 try:
 ensure_future = asyncio.ensure_future
 except AttributeError:
 # "ensure_future()" is not available in Python 3.4.0–3.4.2
 ensure_future = asyncio.async

 task = ensure_future(coro_or_future, loop=loop)

 def cb(f):
 if f.cancelled() and ignore_cancel:
 return
 f.result() # Let the future raise the exception

 task.add_done_callback(cb)

 return task

[docs]def async(coro_or_future, ignore_cancel=True, loop=None):
 """Deprecated alias to :func:`~aiomas.util.create_task()`."""
 warnings.warn('Deprecated. Please use "%s" instead' %
 create_task.__qualname__, DeprecationWarning)
 return create_task(coro_or_future, ignore_cancel=True, loop=None)

[docs]def run(until=None):
 """Run the event loop forever or until the task/future *until* is finished.

 This is an alias to asyncio's ``run_forever()`` if *until* is ``None`` and
 to ``run_until_complete()`` if not.

 """
 import asyncio
 loop = asyncio.get_event_loop()
 if until is None:
 loop.run_forever()
 else:
 return loop.run_until_complete(until)

[docs]def make_ssl_server_context(cafile, certfile, keyfile):
 """Return an :class:`ssl.SSLContext` that can be used by a server socket.

 The server will use the certificate in *certfile* and private key in
 keyfile (both in PEM format) to authenticate itself.

 It requires clients to also authenticate themselves. Their certificates
 will be validated with the root CA certificate in *cafile*.

 It will use *TLS 1.2* with *ECDH+AESGCM* encryption. ECDH keys won't be
 reused in distinct SSL sessions. Compression is disabled.

 """
 ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
 ctx.set_ciphers('ECDH+AESGCM')
 ctx.load_cert_chain(certfile=certfile, keyfile=keyfile)
 ctx.verify_mode = ssl.CERT_REQUIRED
 ctx.load_verify_locations(cafile=cafile)
 ctx.options |= ssl.OP_SINGLE_ECDH_USE
 ctx.options |= ssl.OP_NO_COMPRESSION
 return ctx

[docs]def make_ssl_client_context(cafile, certfile, keyfile):
 """Return an :class:`ssl.SSLContext` that can be used by a client socket.

 It uses the root CA certificate in *cafile* to validate the server's
 certificate. It will also check the server's hostname.

 The client will use the certificate in *certfile* and private key in
 keyfile (both in PEM format) to authenticate itself.

 It will use *TLS 1.2* with *ECDH+AESGCM* encryption.

 """
 ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
 ctx.set_ciphers('ECDH+AESGCM')
 ctx.verify_mode = ssl.CERT_REQUIRED
 ctx.load_verify_locations(cafile=cafile)
 ctx.check_hostname = True
 ctx.load_cert_chain(certfile=certfile, keyfile=keyfile)
 return ctx

[docs]def obj_from_str(obj_path):
 """Return the object that the string *obj_path* points to.

 The format of *obj_path* is ``mod:obj`` where *mod* is a (possibly nested)
 module name and *obj* is an ``.`` separate object path, for example::

 module:Class
 module:Class.function
 package.module:Class
 package.module:Class.function

 Raise a :exc:`ValueError` if the *obj_path* is malformed, an
 :exc:`ImportError` if the module cannot be imported or an
 :exc:`AttributeError` if an object does not exist.

 """
 try:
 mod_name, obj_names = obj_path.split(':')
 except ValueError:
 raise ValueError('Malformed object name "%s": Expected "module:object"'
 % obj_path) from None

 obj_names = obj_names.split('.')
 obj = importlib.import_module(mod_name)
 for name in obj_names:
 obj = getattr(obj, name)

 return obj

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/channel.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.channel

"""
This module implements and asyncio :class:`asyncio.Protocol` protocol for a
request-reply :class:`Channel`.

"""
from asyncio import coroutine
import asyncio
import collections
import itertools
import logging
import struct
import time
import traceback

from . import codecs
from . import local_queue
from .exceptions import RemoteException

__all__ = [
 'REQUEST', 'RESULT', 'EXCEPTION', 'DEFAULT_CODEC',
 'open_connection', 'start_server',
 'Header', 'Request', 'Channel', 'ChannelProtocol',
]

Message types
REQUEST = 0
RESULT = 1
EXCEPTION = 2

DEFAULT_CODEC = codecs.JSON

Header = struct.Struct('!L')

logger = logging.getLogger(__name__)

@coroutine
[docs]def open_connection(addr, *,
 loop=None, codec=None, extra_serializers=(), timeout=0,
 **kwds):
 """Return a :class:`Channel` connected to *addr*.

 This is a convenience wrapper for
 :meth:`asyncio.BaseEventLoop.create_connection()`,
 :meth:`asyncio.BaseEventLoop.create_unix_connection()`, and
 :func:`aiomas.local_queue.create_connection()`.

 If *addr* is a tuple ``(host, port)``, a TCP connection will be created.
 If *addr* is a string, it should be a path name pointing to the unix domain
 socket to connect to.
 If *addr* is a :mod:`aiomas.local_queue` instance, a *LocalQueue*
 connection will be created.

 You can optionally provide the event *loop* to use.

 By default, the :class:`~aiomas.codecs.JSON` *codec* is used. You
 can override this by passing any subclass of :class:`aiomas.codecs.Codec`
 as *codec*.

 You can also pass a list of *extra_serializers* for the codec. The list
 entires need to be callables that return a tuple with the arguments for
 :meth:`~aiomas.codecs.Codec.add_serializer()`.

 With a *timeout* of 0 (the default), there will only be one connection
 attempt before an error is raised (:exc:`ConnectionRefusedError` for TCP
 sockets and LocalQueue, :exc:`FileNotFoundError` for Unix domain sockets).
 If you set *timeout* to a number > 0 or ``None``, this function will try to
 connect repeatedly for at most that many seconds (or indefinitely) before
 an error is raised. Use this if you need to start the client before the
 server.

 The remaining keyword argumens *kwds* are forwarded to
 :meth:`asyncio.BaseEventLoop.create_connection()` and
 :meth:`asyncio.BaseEventLoop.create_unix_connection` respectively.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 if loop is None:
 loop = asyncio.get_event_loop()

 if timeout is None:
 timeout = float('inf')

 codec = codec() if codec else DEFAULT_CODEC()
 for s in extra_serializers:
 codec.add_serializer(*s())

 def factory():
 return ChannelProtocol(codec, loop=loop)

 # Get the appropriate connect function and its arguments:
 if type(addr) is tuple:
 connect = loop.create_connection
 args = (factory,) + addr
 kwargs = kwds
 # If you connect to "localhost", some systems try to connect to
 # 127.0.0.1 and ::1 resulting in an OSError(Multiple errors occured),
 # that wraps two ConnectionRefusedErrors:
 ConnectionRefused = (ConnectionRefusedError, OSError)
 elif type(addr) is str:
 connect = loop.create_unix_connection
 args = (factory, addr)
 kwargs = kwds
 ConnectionRefused = FileNotFoundError
 elif isinstance(addr, local_queue.LocalQueue):
 connect = local_queue.create_connection
 args = (factory, addr)
 kwargs = dict(kwds, loop=loop)
 ConnectionRefused = ConnectionRefusedError
 else:
 raise ValueError('Unknown address type: %s' % addr)

 t, p = yield from _try_connect(connect, args, kwargs, ConnectionRefused,
 timeout)

 return p.channel

@coroutine
[docs]def start_server(addr, client_connected_cb, *,
 loop=None, codec=None, extra_serializers=(), **kwds):
 """Start a server listening on *addr* and call *client_connected_cb*
 for every client connecting to it.

 This function is a convenience wrapper for
 :meth:`asyncio.BaseEventLoop.create_server()`,
 :meth:`asyncio.BaseEventLoop.create_unix_server()`, and
 :func:`aiomas.local_queue.create_server()`.

 If *addr* is a tuple ``(host, port)``, a TCP socket will be created.
 If *addr* is a string, a unix domain socket at this path will be created.
 If *addr* is a :mod:`aiomas.local_queue` instance, a *LocalQueue* server
 will be created.

 The single argument of the callable *client_connected_cb* is a new instance
 of :class:`Channel`.

 You can optionally provide the event *loop* to use.

 By default, the :class:`~aiomas.codecs.JSON` *codec* is used. You can
 override this by passing any subclass of :class:`aiomas.codecs.Codec` as
 codec.

 You can also pass a list of *extra_serializers* for the codec. The list
 entires need to be callables that return a tuple with the arguments for
 :meth:`~aiomas.codecs.Codec.add_serializer()`.

 The remaining keyword argumens *kwds* are forwarded to
 :meth:`asyncio.BaseEventLoop.create_server()` and
 :meth:`asyncio.BaseEventLoop.create_unix_server` respectively.

 This function is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 if loop is None:
 loop = asyncio.get_event_loop()

 if not codec:
 codec = DEFAULT_CODEC

 def factory():
 c = codec()
 for s in extra_serializers:
 c.add_serializer(*s())
 return ChannelProtocol(c, client_connected_cb, loop=loop)

 if type(addr) is tuple:
 return (yield from loop.create_server(factory, *addr, **kwds))
 elif type(addr) is str:
 return (yield from loop.create_unix_server(factory, addr, **kwds))
 elif isinstance(addr, local_queue.LocalQueue):
 return (yield from local_queue.create_server(factory, addr, **kwds))
 else:
 raise ValueError('Unknown address type: %s' % addr)

@asyncio.coroutine
def _try_connect(open_connection, args, kwargs, ConnectionRefused, timeout):
 """Try to establish a connection and return the *(transport, protocol)*
 pair if successful.

 Repeatedly call *open_connection(*args, **kwargs)*. If not connection
 can be opened for *timeout* seconds, re-raise the connection error from
 open_connection (which is of type *ConnectionRefused*).

 """
 retry_interval = 0.5
 start_time = time.monotonic()
 while True:
 try:
 t, p = yield from open_connection(*args, **kwargs)
 break
 except ConnectionRefused:
 if (time.monotonic() - start_time) > timeout:
 raise

 logger.debug('Could not connect. Retrying in %.2fs ...',
 retry_interval)
 yield from asyncio.sleep(retry_interval)
 retry_interval = min(30, 1.5 * retry_interval) # Wait at most 30s

 return t, p

def _get_checked_msg_len(msg):
 """Return the number of bytes/length of *msg*.

 Raise a exc:`ValueError` if the length is to large for :class:`Header`.

 """
 msg_len = len(msg)
 try:
 len_bytes = Header.pack(msg_len)
 except struct.error:
 max_size = 2 ** (Header.size * 8)
 raise ValueError('Serialized message is too long (%d). Maximum '
 'length is %d.' % (msg_len, max_size)) from None

 return len_bytes

[docs]class ChannelProtocol(asyncio.Protocol):
 """Asyncio :class:`asyncio.Protocol` which connects the low level transport
 with the high level :class:`Channel` API.

 The *codec* is used to (de)serialize messages. It should be a sub-class of
 :class:`aiomas.codecs.Codec`.

 Optionally you can also pass a function/coroutine *client_connected_cb*
 that will be executed when a new connection is made (see
 :func:`start_server()`).

 """
 def __init__(self, codec, client_connected_cb=None, *, loop):
 super().__init__()
 self.codec = codec
 self.transport = None
 self.channel = None
 self._client_connected_cb = client_connected_cb
 self._loop = loop
 self._buffer = bytearray()
 self._read_size = None

 # For flow control
 self._paused = False
 self._drain_waiter = None
 self._connection_lost = None
 self._out_msgs = asyncio.Queue()
 self._task_process_out_msgs = None

[docs] def connection_made(self, transport):
 """Create a new :class:`Channel` instance for a new connection.

 Also call the *client_connected_cb* if one was passed to this class.

 """
 self._task_process_out_msgs = asyncio.async(self._process_out_msgs())

 self.transport = transport
 self.channel = Channel(self, self.codec, transport, loop=self._loop)

 if self._client_connected_cb is not None:
 res = self._client_connected_cb(self.channel)
 if asyncio.iscoroutine(res):
 asyncio.async(res, loop=self._loop)

[docs] def connection_lost(self, exc):
 """Set a :exc:`ConnectionError` to the :class:`Channel` to indicate
 that the connection is closed."""
 if exc is None: # pragma: no branch
 exc = ConnectionResetError('Connection closed')
 self.channel._set_exception(exc)
 self._connection_lost = exc
 self._task_process_out_msgs.cancel()

 # Wake up the writer if currently paused.
 if not self._paused:
 return
 waiter = self._drain_waiter
 if waiter is None:
 return
 self._drain_waiter = None
 if waiter.done():
 return
 waiter.set_exception(exc)

[docs] def data_received(self, data):
 """Buffer incomming data until we have a complete message and then
 pass it to :class:`Channel`.

 Messages are fixed length. The first four bytes (in network byte
 order) encode the length of the following payload. The payload is
 a triple ``(msg_type, msg_id, content)`` encoded with the specified
 codec.

 """
 self._buffer.extend(data)
 while True:
 # We may have more then one message in the buffer,
 # so we loop over the buffer until we got all complete messages.

 if self._read_size is None and len(self._buffer) >= Header.size:
 # Received the complete header of a new message
 self._read_size = Header.unpack_from(self._buffer)[0]
 # TODO: Check for too large messages?
 self._read_size += Header.size

 if self._read_size and len(self._buffer) >= self._read_size:
 # At least one complete message is in the buffer
 data = self._buffer[Header.size:self._read_size]
 self._buffer = self._buffer[self._read_size:]
 self._read_size = None
 msg_type, msg_id, content = self.codec.decode(data)
 try:
 self.channel._feed_data(msg_type, msg_id, content)
 except RuntimeError as exc:
 self.channel._set_exception(exc)

 else:
 # No complete message in the buffer. We are done.
 break

[docs] def eof_received(self):
 """Set a :exc:`ConnectionResetError` to the :class:`Channel`."""
 # In previous revisions, an IncompleteMessage error was raised if we
 # already received the beginning of a new message. However, having
 # to types of exceptions raised by this methods makes things more
 # complicated for the user. The benefit of the IncompleteMessage was
 # not big enough.
 self.channel._set_exception(ConnectionResetError())

 @coroutine
[docs] def write(self, len_bytes, content):
 """Serialize *content* and write the result to the transport.

 This method is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 assert self._connection_lost is None
 content = len_bytes + content
 done = asyncio.Future()
 self._out_msgs.put_nowait((done, content))
 yield from done

[docs] def pause_writing(self):
 """Set the *paused* flag to ``True``.

 Can only be called if we are not already paused.

 """
 assert not self._paused
 self._paused = True
 if self._loop.get_debug():
 logger.debug("%r pauses writing", self)

[docs] def resume_writing(self):
 """Set the *paused* flat to ``False`` and trigger the waiter future.

 Can only be called if we are paused.

 """
 assert self._paused
 self._paused = False
 if self._loop.get_debug():
 logger.debug("%r resumes writing", self)

 waiter = self._drain_waiter
 if waiter is not None:
 self._drain_waiter = None
 if not waiter.done():
 waiter.set_result(None)

 @coroutine
 def _process_out_msgs(self):
 try:
 while True:
 done, content = yield from self._out_msgs.get()
 self.transport.write(content)
 yield from self._drain_helper()
 done.set_result(None)
 except asyncio.CancelledError:
 assert self._connection_lost is not None

 @coroutine
 def _drain_helper(self, before=False):
 if self._connection_lost is not None:
 raise self._connection_lost
 if not self._paused:
 return
 waiter = self._drain_waiter
 assert waiter is None or waiter.cancelled()
 waiter = asyncio.Future(loop=self._loop)
 self._drain_waiter = waiter
 yield from waiter

[docs]class Request:
 """Represents a request returned by :meth:`Channel.recv()`. You shoudn't
 instantiate it yourself.

 content contains the incoming message.

 msg_id is the ID for that message. It is unique within a channel.

 protocol is the channel's :class:`ChannelProtocol` instance that is used
 for writing back the reply.

 To reply to that request you can ``yield from`` :meth:`Request.reply()`
 or :meth:`Request.fail()`.

 """
 def __init__(self, content, message_id, protocol):
 self._content = content
 self._msg_id = message_id
 self._protocol = protocol

 @property
 def content(self):
 """The content of the incoming message."""
 return self._content

 @coroutine
[docs] def reply(self, result):
 """Reply to the request with the provided result.

 This method is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 protocol = self._protocol
 if protocol._connection_lost is not None:
 raise protocol._connection_lost

 content = (RESULT, self._msg_id, result)
 try:
 content = protocol.codec.encode(content)
 msg_len = _get_checked_msg_len(content)

 except Exception as e:
 return (yield from self.fail(e))
 else:
 yield from protocol.write(msg_len, content)

 @coroutine
[docs] def fail(self, exception):
 """Indicate a failure described by the *exception* instance.

 This will raise a :exc:`~aiomas.exceptions.RemoteException` on the
 other side of the channel.

 This method is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 protocol = self._protocol
 if protocol._connection_lost is not None:
 raise protocol._connection_lost

 stacktrace = traceback.format_exception(exception.__class__, exception,
 exception.__traceback__)
 content = (EXCEPTION, self._msg_id, ''.join(stacktrace))
 content = protocol.codec.encode(content)
 msg_len = _get_checked_msg_len(content)
 yield from protocol.write(msg_len, content)

[docs]class Channel:
 """A Channel represents a request-reply channel between two endpoints. An
 instance of it is returned by :func:`open_connection()` or is passed to the
 callback of :func:`start_server()`.

 protocol is an instance of :class:`ChannelProtocol`.

 transport is an :class:`asyncio.BaseTransport`.

 loop is an instance of an :class:`asyncio.BaseEventLoop`.

 """
 def __init__(self, protocol, codec, transport, loop):
 self._protocol = protocol
 self._codec = codec
 self._transport = transport
 self._loop = loop

 self._message_id = itertools.count()
 self._out_messages = {} # message_id -> message
 self._in_queue = collections.deque()
 self._waiter = None # A future.
 self._exception = None

 @property
 def codec(self):
 """The codec used to de-/encode messages send via the channel."""
 return self._codec

 @property
 def transport(self):
 """The transport of this channel (see the `Python documentation
 <https://docs.python.org/3/library/asyncio-protocol.html#transports>`_
 for details).

 """
 return self._transport

[docs] def send(self, content):
 """Send a request *content* to the other end and return a future which
 is triggered when a reply arrives.

 One of the following exceptions may be raised:

 - :exc:`ValueError` if the message is too long (the length of the
 encoded message does not fit into a *long*, which is ~ 4 GiB).

 - :exc:`~aiomas.exceptions.RemoteException`: The remote site raised an
 exception during the computation of the result.

 - :exc:`ConnectionError` (or its subclass :exc:`ConnectionResetError`):
 The connection was closed during the request.

 - :exc:`RuntimeError`:

 - If an invalid message type was received.

 - If the future returned by this method was already triggered or
 canceled by a third party when an answer to the request arrives
 (e.g., if a task containing the future is cancelled). You get
 more detailed exception messages if you `enable asyncio's debug
 mode`__

 __ https://docs.python.org/3/library/asyncio-dev.html

 .. code-block:: python

 try:
 result = yield from channel.request('ohai')
 except RemoteException as exc:
 print(exc)

 """
 if self._exception is not None:
 raise self._exception

 message_id = next(self._message_id)
 out_message = asyncio.Future(loop=self._loop)
 if self._loop.get_debug():
 self._out_messages[message_id] = (out_message, content)
 else:
 self._out_messages[message_id] = out_message

 data = self._codec.encode((REQUEST, message_id, content))
 try:
 msg_len = _get_checked_msg_len(data)
 except ValueError:
 del self._out_messages[message_id]
 out_message.cancel()
 raise

 asyncio.async(self._protocol.write(msg_len, data), loop=self._loop)

 return out_message

 @coroutine
[docs] def recv(self):
 """Wait for an incoming :class:`Request` and return it.

 May raise one of the following exceptions:

 - :exc:`ConnectionError` (or its subclass :exc:`ConnectionResetError`):
 The connection was closed during the request.

 - :exc:`RuntimeError`: If two processes try to read from the same
 channel or if an invalid message type was received.

 This method is a `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """
 if self._exception is not None:
 raise self._exception

 if not self._in_queue:
 if self._waiter is not None:
 raise RuntimeError('recv() called while another coroutine is '
 'already waiting for incoming data.')
 self._waiter = asyncio.Future(loop=self._loop)
 try:
 yield from self._waiter
 finally:
 # In case of an exception, "self._waiter" is already set to
 # "None" by "self._set_exception()":
 self._waiter = None

 return self._in_queue.popleft()

 def _close(self):
 """Close the channel's transport."""
 if self._transport is not None:
 transport = self._transport
 self._transport = None
 return transport.close()

 @coroutine
[docs] def close(self):
 """`Coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_ that
 closes the channel and waits for all sub tasks to finish."""
 self._close()
 try:
 yield from self._protocol._task_process_out_msgs
 if self._loop.get_debug():
 futs = [m[0] for m in self._out_messages.values()]
 else:
 futs = self._out_messages.values()
 yield from asyncio.gather(*futs, return_exceptions=True)
 except asyncio.CancelledError:
 pass

[docs] def get_extra_info(self, name, default=None):
 """Wrapper for :meth:`asyncio.BaseTransport.get_extra_info()`."""
 return self._transport.get_extra_info(name, default)

 def _feed_data(self, msg_type, msg_id, content):
 """Called by :class:`ChannelProtocol` when a new message arrived."""
 if msg_type == REQUEST:
 # Received new request
 message = Request(content, msg_id, self._protocol)
 self._in_queue.append(message)

 waiter = self._waiter
 if waiter is not None:
 self._waiter = None
 waiter.set_result(False)

 elif msg_type == RESULT or msg_type == EXCEPTION:
 # Received reply to a request
 if self._loop.get_debug():
 message, req = self._out_messages.pop(msg_id)
 else:
 message = self._out_messages.pop(msg_id)
 if message.done():
 errmsg = 'Request reply already set.'
 if message.cancelled():
 errmsg = 'Request was cancelled.'
 if self._loop.get_debug():
 errmsg += ' Request: %s; Reply: %s' % (req, content)
 raise RuntimeError(errmsg)

 if msg_type == RESULT:
 message.set_result(content)
 else:
 origin = self.get_extra_info('peername')
 message.set_exception(RemoteException(origin, content))

 else:
 raise RuntimeError('Invalid message type %d' % msg_type)

 def _set_exception(self, exc):
 """Set an exception as result for all futures managed by the Channel
 in order to stop all coroutines from reading/writing to the socket."""
 self._exception = exc

 # Set exception to wait-recv future
 waiter = self._waiter
 if waiter is not None:
 self._waiter = None
 if not waiter.cancelled():
 waiter.set_exception(exc)

 # Set exception to all message futures which wait for a reply
 for msg in self._out_messages.values():
 if self._loop.get_debug():
 msg, _ = msg
 if not msg.done():
 msg.set_exception(exc)

 self._close()

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/subproc.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.subproc

"""
This module helps you to :func:`start()` an agent container in a new
subprocess. The new container will have a :class:`Manager` agent that allows
the master process to spawn other agents in the new container.

The following example demonstrate how you can build a nice CLI with the `click
<http://click.pocoo.org>`_ around this module. The script will start you
a container with an :class:`~aiomas.clocks.ExternalClock` and the
:class:`~aiomas.codecs.MsgPackBlosc` codec:

.. code-block:: python3

 # container.py
 import logging

 import aiomas
 import arrow
 import click

 def validate_addr(ctx, param, value):
 try:
 host, port = value.rsplit(':', 1)
 return (host, int(port))
 except ValueError as e:
 raise click.BadParameter(e)

 def validate_start_date(ctx, param, value):
 try:
 arrow.get(value) # Check if the date can be parsed
 except arrow.parser.ParserError as e:
 raise click.BadParameter(e)
 return value

 @click.command()
 @click.option('--start-date', required=True,
 callback=validate_start_date,
 help='Start date for the agents (ISO-8601 compliant, e.g.: '
 '2010-03-27T00:00:00+01:00')
 @click.option('--log-level', '-l', default='info', show_default=True,
 type=click.Choice(['debug', 'info', 'warning', 'error',
 'critical']),
 help='Log level for the MAS')
 @click.argument('addr', metavar='HOST:PORT', callback=validate_addr)
 def main(addr, start_date, log_level):
 logging.basicConfig(level=getattr(logging, log_level.upper()))
 clock = aiomas.ExternalClock(start_date, init_time=-1)
 codec = aiomas.codecs.MsgPackBlosc
 task = aiomas.subproc.start(addr, clock=clock, codec=codec)
 aiomas.run(until=task)

 if __name__ == '__main__':
 main()

Example usage: :command:`python container.py
--start-date=2010-03-27T00:00:00+01:00 localhost:5556`.

.. note::

 You should use ``sys.executable`` instead of just ``'python'`` when you
 start a new subprocess from within a Python script to make sure you use the
 correct (same) interpreter.

"""
import asyncio
import logging

from . import agent, rpc, util

logger = logging.getLogger(__name__)

@asyncio.coroutine
[docs]def start(addr, **container_kwargs):
 """`Coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_ that
 starts a container with a :class:`Manager` agent.

 The agent will connect to *addr* ``('host', port)`` and wait for commands
 to spawn new agents within its container.

 The *container_kwargs* will be passed to
 :meth:`aiomas.agent.Container.create()` factory function.

 This coroutine finishes after :meth:`Manager.stop()` was called or when
 a :exc:`KeyboardInterrupt` is raised.

 """
 container_kwargs.update(as_coro=True)
 container = yield from agent.Container.create(addr, **container_kwargs)
 try:
 manager = Manager(container)
 yield from manager.stop_received
 except KeyboardInterrupt:
 logger.info('Execution interrupted by user')
 finally:
 yield from container.shutdown(as_coro=True)

[docs]class Manager(agent.Agent):
 """An agent that can start other agents within its container.

 If the container uses an :class:`~aiomas.clocks.ExternalClock`, it can also
 set the time for the container's clock.

 """
 def __init__(self, container):
 super().__init__(container)
 self.stop_received = asyncio.Future()

 @rpc.expose
 @asyncio.coroutine
[docs] def spawn(self, qualname, *args, **kwargs):
 """Create a new instance of an agent and return a proxy to it and its
 address.

 qualname is a string defining a class (or factory method/coroutine)
 for instantiating the agent (see :func:`aiomas.util.obj_from_str()` for
 details). *args* and *kwargs* get passed to this callable as
 positional and keyword arguemnts respectively.

 This is an exposed `coroutine
 <https://docs.python.org/3/library/asyncio-task.html#coroutine>`_.

 """

 callable = util.obj_from_str(qualname)
 if asyncio.iscoroutinefunction(callable):
 agent = yield from callable(self.container, *args, **kwargs)
 else:
 agent = callable(self.container, *args, **kwargs)

 logger.debug('Spawned %s(%s)' % (agent.__class__.__name__, agent))

 return agent, agent.addr

 @rpc.expose
[docs] def set_time(self, time):
 """Set the agent's container's time to *time*.

 This only works if the container uses an
 :class:`~aiomas.clocks.ExternalClock`.

 This is an exposed function.

 """
 self.container.clock.set_time(time)

 @rpc.expose
[docs] def stop(self):
 """Triggers the *stop_received* future of this agent causing its
 container process to shutodwn and terminate.

 This is an exposed function.

 """
 self.stop_received.set_result(True)

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/aiomas/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 		Module code »

 Source code for aiomas.exceptions

"""
Exception types used by *aiomas*.

"""

[docs]class AiomasError(Exception):
 """Base class for all exceptions defined by aiomas."""
 pass

[docs]class RemoteException(AiomasError):
 """Wraps a traceback of an exception on the other side of a channel.

 origin is the remote peername.

 remote_traceback is the remote exception's traceback.

 """
 def __init__(self, origin, remote_traceback):
 super().__init__(origin, remote_traceback)
 self.origin = origin #: Peername (producer of the exception)
 self.remote_traceback = remote_traceback #: Original traceback

 def __str__(self):
 return 'Origin: %s\n%s' % (self.origin, self.remote_traceback)

[docs]class SerializationError(Exception):
 """Raised when an object cannot be serialized."""

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 All modules for which code is available

		aiomas.agent

		aiomas.channel

		aiomas.clocks

		aiomas.codecs

		aiomas.exceptions

		aiomas.local_queue

		aiomas.rpc

		aiomas.subproc

		aiomas.util

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		aiomas 1.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, Stefan Scherfke.
 Created using Sphinx 1.4.1.

_static/network-messages.png
lype ID Content

A
\x00\x00\x00\x18 [1, 42, "Hello aiomas!"]
— I — A

~ —~

Header Payload

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/comment.png

_static/agent-container.png
Container Container
localhost:5555 localhost:5556

[voc server SN

Agent A Agent B Agent C

tep://localhost:5555/0 tep://localhost:5555/1 tcp://localhost:5556/0

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/overview.png
A

function calls | | return values
A2

A

request data | | reply data

A2

A

request bytes | | reply bytes

Transport (TCP/unix socket)

_static/up.png

_static/up-pressed.png

