
aiomas Documentation
Release 0.6.1

Stefan Scherfke

November 21, 2015

Contents

1 Contents: 3
1.1 Overview . 3
1.2 The agent layer . 4
1.3 The RPC layer . 7
1.4 The channel layer . 7
1.5 Codecs for message serialization . 8
1.6 Container clocks . 12
1.7 Testing and debugging . 12
1.8 Enabling transport security (TLS) . 14
1.9 API reference . 17

2 Indices and tables 31

Python Module Index 33

i

ii

aiomas Documentation, Release 0.6.1

PyPI | Bitbucket | Mailing list | IRC: #aiomas

aiomas is an easy-to-use library for remote procedure calls (RPC) and multi-agent systems (MAS). It’s
written in pure Python on top of asyncio.

Here is an example how you can write a simple multi-agent system:

>>> import aiomas
>>>
>>> class TestAgent(aiomas.Agent):
... def __init__(self, container):
... super().__init__(container)
... print('Ohai, I am %s' % self)
...
... async def run(self, addr):
... remote_agent = await self.container.connect(addr)
... ret = await remote_agent.service(42)
... print('%s got %s from %s' % (self, ret, remote_agent))
...
... @aiomas.expose
... def service(self, value):
... return value
>>>
>>> c = aiomas.Container.create(('localhost', 5555))
>>> agents = [TestAgent(c) for i in range(2)]
Ohai, I am TestAgent('tcp://localhost:5555/0')
Ohai, I am TestAgent('tcp://localhost:5555/1')
>>> aiomas.run(until=agents[0].run(agents[1].addr))
TestAgent('tcp://localhost:5555/0') got 42 from TestAgentProxy('tcp://localhost:5555/1')
>>> c.shutdown()

aiomas is released under the MIT license. It requires Python 3.4 and above and runs on Linux, OS X,
and Windows.

Contents 1

https://pypi.python.org/pypi/aiomas
https://bitbucket.org/ssc/aiomas
https://groups.google.com/forum/#!forum/aiomas
https://docs.python.org/3/library/asyncio.html

aiomas Documentation, Release 0.6.1

2 Contents

CHAPTER 1

Contents:

1.1 Overview

Aiomas’ main goal is making it easier to create distributed systems (like multi-agent systems (MAS))
with pure Python and asyncio.

Therefore, it adds three layers of abstraction around the transports (TCP or Unix domain sockets) that
asyncio provides:

1. The channel layer allows you to send and receive actual data like strings, lists ob numbers instead
of single bytes.

The Channel class lets you make requests and wait for the corresponding replies within a corou-
tine: reply = await channel.send(request).

Every channel has a Codec instance that is responsible for (de)serializing the data that is being
sent via the channel. By default, JSON is used for that. Alternatively, you can use MsgPack and
optionally compress it using Blosc. You can also extend codecs with custom serializers for more
object types.

3

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine
http://www.json.org/
http://msgpack.org/
http://blosc.org/

aiomas Documentation, Release 0.6.1

2. The remote procedure call (RPC) layer lets you call function on remote objects.

You can expose the methods of an object as well as functions within a dict. On the other side of
the connection, proxy objects represent these exposed functions.

You can call remote functions within a coroutine: return_value = await
remote.method(’spam’, eggs=3.14).

3. The agent layer hides some of the RPC layer’s complexity and allows you to create thousands of
interconnected objects (agents) without opening thousands of unique connections between them.

Therefore, all agents live within a container. Containers take care of creating agent instances and
performing the communication between them.

The container provides a clock for the agents. This clock can either be synchronized with the real
(wall-clock) time or be set by an external process (e.g., other simulators).

The following sections explain theses layers in more detail.

1.2 The agent layer

This section describes the agent layer and gives you enough information to implement your own multi-
agent system without going too much into detail. For that, you should also read the section about the
RPC layer.

1.2.1 Overview

You can think of agents as small, independent programs running in parallel. Each agent waits for input
(e.g., incoming network messages), processes the input and creates, based on its internal state and the
input, some output (like outgoing network messages).

You can also imagine them as being like normal objects that call other object’s methods. But instead of
calling these methods directly, they do remote procedure calls (RPC) via a network connection.

In theory, that means that every agent has a little server with an event loop that waits for incoming
messages and dispatches them to the corresponding method calls.

Using this model, you would quickly run out of resources with hundreds or thousands of interconnected
agents. For this reason, agents are clustered in containers. A container provide the network server and
event loop which all agents within the container share.

Agents are uniquely identified by the container’s address and an ID (which is unique within a container),
for example: tcp://localhost:5555/0.

The following image illustrates this: If Agent C wants to send a message to Agent A, its container
connects to A’s container. Agent C can now send a message to Agent A. If Agent C now wanted to send
a message to Agent B, it would simply reuse the same connection.

4 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

As you can see in the figure above, containers also have a clock, but you can ignore that fact for the
moment. We’ll come back to that later.

So the four components of a distributed system in aiomas are:

1. Agent: You implement your business logic in subclasses of aiomas.Agent. Agents can be
reactive or proactive.

Reactive agents only react to incoming messages, that means, they simply expose some methods
that other agents can call.

Proactive agents actively perform one ore more tasks, i.e., calling other agent’s methods.

An agent can be both, proactive and reactive.

2. Container: All agents live in a container. The agent container implements everything networking
related (e.g., a shared RPC server) so that the agent base class can be as light-weight as possible.
It also defines the codec used for message (de)serialization and provides a clock for agents.

3. Codec: Codecs define how messages to other agents get serialized to byte strings that can be
sent over the network. The base codecs can only serialize the most common object types (like
numbers, strings, lists or dicts) but you can extend them with serializers for custom object types.

The Codecs section explain all this in detail.

4. Clock: Every container provides a clock for agents. Clocks are important for operations with a
timeout (like sleep()). The default clock is a real-time clock synchronized to your system’s
time.

However, if you want to integrate your MAS with a simulation, you may want to let the time
pass faster then real-time (in order to decrease the duration of your simulation). For that use case,
aiomas provides a clock that can be synchronized with external sources.

All clocks provide functions to get the current time, sleep for some time or execute a task after
a given timeout. If you use these function instead of the once asyncio provides, you can easily
switch between different kinds of clocks. The Clocks section provides more details and examples.

Don’t worry if you feel a bit confused now. I’ll explore all of this with small, intuitive examples.

1.2.2 Hello World: A single, proactive agent

In our first example, we’ll create a very simple agent which repeatedly prints “Hello, World!”:

1.2. The agent layer 5

aiomas Documentation, Release 0.6.1

>>> import aiomas
>>>
>>> class HelloWorld(aiomas.Agent):
... def __init__(self, container, name):
... super().__init__(container)
... self.name = name
...
... async def run(self):
... print(self.name, 'says:')
... clock = self.container.clock
... for i in range(3):
... await clock.sleep(0.1)
... print('Hello, World!')

Agents should be a subclass of Agent. They always need a reference to the container they live in, so
that Agent.__init__() can register the agent with that container. If you overide __init__(),
always make sure to call super().__init__(container) from your own implementation.

Our agent also defines a task run() which prints “Hello, World!” three times. The task also uses the
container’s clock to sleep for a small amout of time between each print.

The clock (see clocks) exposes various time related functions similar to those that asyncio offers, but
you can easily exchange the default real-time clock of a container with another one (e.g., one where time
passes faster than real-time, which is very useful in simulations).

>>> container = aiomas.Container.create(('localhost', 5555))
>>> agent = HelloWorld(container, 'Monty')
>>> aiomas.run(until=agent.run())
Monty says:
Hello, World!
Hello, World!
Hello, World!
>>> container.shutdown()

In order to run the agent, you need to start a Container first. The container will create an RPC server
and bind it to the specified address.

The function run() is an alias for loop = asyncio.get_event_loop();
loop.run_until_complete(task).

These are the very basics auf aiomas’ agent module. In the next section you’ll learn how an agent can
call another agent’s methods.

1.2.3 Calling other agent’s methods

The purpose of multi-agent systems is having multiple agents calling each other’s methods. Let’s see
how we do this. For the sake of simplicity we’ll create two different agent types in this example where
Caller calls a method of Callee:

>>> import asyncio
>>> import aiomas
>>>
>>> class Callee(aiomas.Agent):
...
... @aiomas.expose
... def spam(self, times):

6 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

... """Return a lot of spam."""

... return 'spam' * times
>>>
>>>
>>> class Caller(aiomas.Agent):
...
... async def run(self, callee_addr):
... print(self, 'connecting to', callee_addr)
... callee = await self.container.connect(callee_addr)
... print(self, 'connected to', callee)
... result = await callee.spam(3)
... print(self, 'got', result)
>>>
>>>
>>> container = aiomas.Container.create(('localhost', 5555))
>>> callee = Callee(container)
>>> caller = Caller(container)
>>> aiomas.run(until=caller.run(callee.addr))
Caller('tcp://localhost:5555/1') connecting to tcp://localhost:5555/0
Caller('tcp://localhost:5555/1') connected to CalleeProxy('tcp://localhost:5555/0')
Caller('tcp://localhost:5555/1') got spamspamspam
>>> container.shutdown()

The agent Callee exposes its method spam() via the @aiomas.expose decorator and thus allows
other agents to call this method. The arguments and return values of exposed methods need to be
serializable (the next sections shows you how to add serializers for custom data types). Furthermore,
exposed methods can be both, normal functions and coroutines.

The Caller agent does not expose any methods, but defines a task run() which receives the address
of the remote agent. It can connect to that agent via the container’s connect() method. This is a
coroutine, so you need to await it. It’s return value is a proxy object to the remote agent.

Proxies represent a remote object and provide access to exposed attributes (like functions) of that object.
In the example above, we use the proxy to call the spam() function. Since this involves sending
messages to the remote agent, you always need to use await with remote method calls.

• Many agents one container

• Many agents multiple containers on one machine

• many agents, multiple machines.

1.3 The RPC layer

1.4 The channel layer

Here is a minimal example that shows how the Channel can be used:

>>> import aiomas
>>>
>>>
>>> ADDR = ('localhost', 5555)
>>>
>>>
>>> async def handle_client(channel):

1.3. The RPC layer 7

aiomas Documentation, Release 0.6.1

... req = await channel.recv()

... print(req.content)

... await req.reply('cya')

... channel.close()
>>>
>>>
>>> async def client():
... channel = await aiomas.channel.open_connection(ADDR)
... rep = await channel.send('ohai')
... print(rep)
... channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(ADDR, handle_client))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

1.4.1 How can I bind a server socket to a random port?

You cannot ask your OS for an available port but have to try a randomly chosen port until you succeed:

>>> import random
>>>
>>> max_tries = 100
>>> port_range = (49152, 65536)
>>>
>>> async def random_server(host, port_range, max_tries):
... for i in range(max_tries):
... try:
... port = random.randrange(*port_range)
... server = await aiomas.channel.start_server(
... (host, port), handle_client)
... except OSError as oe:
... if oe.errno != 48:
... # Re-raise if not errno 48 ("address already in use")
... raise
... else:
... return server, port
... raise RuntimeError('Could not bind server to a random port.')
>>>
>>> server, port = aiomas.run(random_server('localhost', port_range, max_tries))
>>> server.close()
>>> aiomas.run(server.wait_closed())

1.5 Codecs for message serialization

Codecs are used to convert the objects that you are going to send over the network to bytes and the bytes
that you received back to the original objects. This is called serialization and deserialization.

A codec specifies, how the text representation of a certain object looks like. It can also recreate the
object based on its text representation.

8 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

For example, the JSON encoded representation of the list [’spam’, 3.14] would be
b’["spam",3.14]’.

Many different codecs exists. Some of the most widely used ones are JSON, XML or MsgPack. They
mainly differ in their:

• verbosity or compactness: How many bytes are needed to encode an object?

• performance: How fast can they encode and decode objects?

• readability: Can the result easily be read by humans?

• availability on different platforms: For which programming languages do libraries or bindings
exist?

• security: Is it possible to decode bytes to arbitrary objects?

Which codec is the best very much depends on your specific requirements. An evaluation of different
codecs and serialization formats is beyond the scope of this document, though.

1.5.1 Which codecs does aiomas support?

Aiomas implements the following codecs:

• aiomas.codecs.JSON

• aiomas.codecs.MsgPack

• aiomas.codecs.MsgPackBlosc

JSON

We chose JSON as default, because it is available through the standard library (no additional dependen-
cies) and because it is relatively efficient (both, in terms of performance and serialization results). It is
also widely used and supported as well as human readable.

MsgPack

The MsgPack codec can be more efficient but requires you to compile a C extension. For this reason, it
is not enabled by default but available as an extra feature. To install it run:

$ pip install -U aiomas[mp] # Install aiomas with MsgPack
$ # or
$ pip install -U aiomas msgpack-python

MsgPackBlosc

If you want to send long messages, e.g., containing large NumPy arrays, further compressing the results
of MsgPack with Blosc can give you additional performance. To enable it, install:

$ pip install -U aiomas[mpb] # Install aiomas with MsgPack-Blosc
$ # or
$ pip install -U aiomas msgpack-python blosc

1.5. Codecs for message serialization 9

http://www.json.org/
http://www.w3.org/XML/
http://msgpack.org/
http://blosc.org/

aiomas Documentation, Release 0.6.1

Which codec should I use?

You should always start with the default JSON codec. It should usually be “good enough”.

If your messages contain large chunks of binary data (e.g., serialized NumPy arrays), you should evaluate
MsgPack, because it natively serializes objects to bytes.

MsgPackBlosc may yield better performance then MsgPack if your messages become very large and/or
you really send a lot of messages. The codec can decrease the memory consumption of your program
and reduce the time it takes to send a message.

Note: All codecs live in the aiomas.codecs package but, for your convenience, you can also import
them directly from aiomas.

1.5.2 How do I use codecs?

As a normal user, you don’t have to interact with codecs directly. You only need to pass the class object
of the desired codec as a parameter to some functions and classes if you don’t want to use the default.

1.5.3 Which object types can be (de)serialized?

All codecs bundled with aiomas support serializing the following types out of the box:

• NoneType

• bool

• int

• float

• str

• list / tuple

• dict

MsgPack and MsgPackBlosc also support bytes.

Note: JSON deserializes both, lists and tuples, to lists. MsgPack on the other hand deserializes them
to tuples.

RPC connections support serializing arbitrary objects with RPC routers which get deserialized to Proxies
for the corresponding remote object. See rpc_router_serialization for details.

In addition, connections made by a Container support Arrow date objects.

1.5.4 How do I add serializers for additional object types?

All functions and classes that accept a codec parameter also accept an optional list of extra_serializers.
The list must contain callables with the following signature: callable() -> tuple(type,
serialization_func, deserialisation_func).

10 Chapter 1. Contents:

http://crsmithdev.com/arrow/

aiomas Documentation, Release 0.6.1

The type is a class object. The serializer will be applied to all direct instances of that class but not to
subclasses. This may change in the future, however. The only exception is a serializer for object
which, if specified, serves as a fall-back for objects that couln’t be serialized other ways (this is used by
RPC connections to serialize objects with an RPC router).

The serializer_func is a callable with one argument – the object to be serialized – and needs to return an
object that is serializable by the base codec (e.g., a str, bytes or dict).

The deserializer_func has the same signature, but the argument is the serialized object and the return
value a deserialized equivalent of the original object. Usually, “equivalent” means “an object of the
same type as the original”, but objects with an RPC router, for example, get deserialized to proxies for
the original objects in order to allow remote procedure calls on them.

Here is an example that shows how a serializer for NumPy arrays might look like. It will only work for
the MsgPack and MsgPackBlosc codecs, because the dict returned by _serialize_ndarray() contains byte
strings which JSON cannot handle:

import aiomas
import numpy as np

def get_np_serializer():
"""Return a tuple *(type, serialize(), deserialize())* for NumPy arrays
for usage with an :class:`aiomas.codecs.MsgPack` codec.

"""
return np.ndarray, _serialize_ndarray, _deserialize_ndarray

def _serialize_ndarray(obj):
return {

'type': obj.dtype.str,
'shape': obj.shape,
'data': obj.tostring(),

}

def _deserialize_ndarray(obj):
array = np.fromstring(obj['data'], dtype=np.dtype(obj['type']))
return array.reshape(obj['shape'])

Usage:
c = aiomas.Container(('localhost', 5555), codec=aiomas.MsgPack,

extra_serializers=[get_np_serializer])

1.5.5 How to create custom codecs

The base class for all codecs is aiomas.codecs.Codec.

Subclasses must at least implement the encode() and decode() methods.

You can use the existing codecs (e.g., JSON or MsgPack) as examples.

1.5. Codecs for message serialization 11

aiomas Documentation, Release 0.6.1

1.6 Container clocks

• Why clocks?

• What are clocks used for?

• Which clocks exists?

• What’s their API?

• How to write custom codecs?

1.7 Testing and debugging

[Status: draft]

• asyncio’s debug mode is honored. If it is activate, aiomas also falls into debug mode and gives you
better / more detailed exceptions in some cases. This impacts performance, so it isn’t activated
always.

1.7.1 Testing coroutines with pytest

A naïve approach would be:

tests/test_coros.py
import asyncio

def test_coro():
loop = asyncio.get_event_loop()

async def do_test():
await asyncio.sleep(0.1)
assert 0 # onoes!

loop.run_until_complete(do_test())

Creating and closing a loop should better be a fixture:

tests/conftest.py
import asyncio

@pytest.yield_fixture
def loop():

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()

tests/test_coros.py
def test_coro(loop):

async def do_test():
await asyncio.sleep(0.1)
assert 0 # onoes!

12 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

loop.run_until_complete(do_test())

Wouldn’t it be cool if tests actually looked like this:

tests/test_coros.py
async def test_coro(loop):

await asyncio.sleep(0.1)
assert 0

It’s possible. You just have to create a small pytest plug-in:

tests/conftest.py
import asyncio

@pytest.yield_fixture
def loop():

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()

def pytest_pycollect_makeitem(collector, name, obj):
"""Collect asyncio coroutines as normal functions, not as generators."""
if collector.funcnamefilter(name) and asyncio.iscoroutinefunction(obj):

return list(collector._genfunctions(name, obj))

def pytest_pyfunc_call(pyfuncitem):
"""If ``pyfuncitem.obj`` is an asyncio coroutinefunction, execute it via
the event loop instead of calling it directly."""
testfunction = pyfuncitem.obj

if not asyncio.iscoroutinefunction(testfunction):
return

Copied from _pytest/python.py:pytest_pyfunc_call()
funcargs = pyfuncitem.funcargs
testargs = {}
for arg in pyfuncitem._fixtureinfo.argnames:

testargs[arg] = funcargs[arg]
coro = testfunction(**testargs) # Will not execute the test yet!

Run the coro in the event loop
loop = testargs.get('loop', asyncio.get_event_loop())
loop.run_until_complete(coro)

return True

This is tested with pytest 2.6 and 2.7. Maybe newer releases of pytest will include something like this
out-of-the-box.

1.7. Testing and debugging 13

aiomas Documentation, Release 0.6.1

1.8 Enabling transport security (TLS)

This guide explains how you can encrypt all messages sent with aiomas. Transport layer security (TLS,
formerly known as SSL) can be applied in a similar fashion to all three layers (channel, RPC, agent) of
aiomas and the following sections will show you how.

Note: Even if you don’t have much experience with cryptography, you should be able to follow this
guide and use TLS encryption for your program.

Nonetheless, I strongly recommend you to learn the basics of it. A good read is Crypto 101, by Laurens
Van Houtven. Sean Cassidy also provides a nice overview about starting with crypto. There are also
various tutorials for setting up your own PKI (1, 2, 3, 4).

1.8.1 Security architecture

This guide assumes that your system is self-contained and you control all parts of it. This allows you to
use TLS 1.2 with a modern cipher and to setup a public key infrastructure (PKI) with a self-signed root
CA. All machines that you deploy your system on only thrust that CA (and ignore the CAs bundled with
your OS or web browser).

Ideally, the root CA should be created on separate, non-production machine. Depending on your security
requirements, that machine should not even be connected to the network.

You create a certificate signing request (CSR) on each production machine. You copy the CSR to your
root CA which signs it. You then copy the signed certificate back to the production machine. Ideally,
you should use an SD card for this (they are more secure than USB flash drives), but again, this depends
on your security requirements and using SSH might also work for you.

1.8.2 The root CA

First, you create the root CA’s private key. It should at least be 2048, or better, 4096 bits long. It should
also be encrypted with a strong passphrase:

$ openssl genrsa -aes256 -out ca.key 4096

The key should never leave the machine, except if you store it somewhere save (e.g., on an SD card).

Now you sign the key and create the root certificate. You use it together with the private key for signing
CSRs for other machines:

$ openssl req -new -x509 -nodes -key ca.key -out ca.pem -days 1000

The command above requires some input from you. The Common Name (e.g., the FQDN) that you
associate with the certificate must be different from the ones that you use for your production machine’s
CSRs. The certificate should be valid for a longer period of time than the CSRs that it signs.

1.8.3 Certificates for production machines

You need to create one private key and CSR on each of your production machines:

$ openssl genrsa -out device.key 4096
$ openssl req -new -key device.key -out device.csr

14 Chapter 1. Contents:

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.crypto101.io/
https://www.crypto101.io/
https://www.seancassidy.me/so-you-want-to-crypto.html
http://datacenteroverlords.com/2012/03/01/creating-your-own-ssl-certificate-authority/
http://blog.gosquadron.com/use-tls
https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure/
http://www.area536.com/projects/be-your-own-certificate-authority-with-openssl/

aiomas Documentation, Release 0.6.1

This time, the private key is not encrypted. Otherwise, you’d have to hard-code the password into your
source code (which would make the encryption futile) or enter it each time you start your program
(which is unfeasible for a distributed multi-agent system). The private key should still not leave the
machine; so don’t even think of putting it into version control or reusing it on another machine.

The CSR creation requires similar input as the CA certificate that you created above. As Common Name
or FQDN you should enter the address on which the machines server socket will be listening.

Copy device.csr to the root CA machine and sign it there:

$ openssl x509 -CA ca.pem -CAkey ca.key -CAcreateserial -req -in device.csr -out device.pem -days 365

The certificate will be valid for one year. You can change this if you want.

Transfer the certificate device.pem as well as copy of the CA certificate ca.pem back to the origi-
nating machine.

The device.pem will be used to authenticate that machine against other machines. ca.pem will be
used to verify other machine’s certificates when they try to authenticate themselves.

1.8.4 Enabling TLS for channels and RPC connections

In pure asyncio programs, you enable SSL/TLS by passing an ssl.SSLContext instance to
create_connection() and create_server().

aiomas.channel.open_connection() and aiomas.channel.start_server() (and
similarly in the aiomas.rpc module) are just wrappers for the corresponding asyncio methods and
will forward an SSLContext to them if one is provided.

Here is a minimal, commented example that demonstrate how to create proper SSL contexts:

>>> import asyncio
>>> import ssl
>>>
>>> import aiomas
>>>
>>>
>>> async def client(addr, ssl):
... """Connect to *addr* and use the *ssl* context to enable TLS.
... Send "ohai" to the server, print its reply and terminate."""
... channel = await aiomas.channel.open_connection(addr, ssl=ssl)
... reply = await channel.send('ohai')
... print(reply)
... channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle client requests by printing them. Send a reply and
... terminate."""
... request = await channel.recv()
... print(request.content)
... await request.reply('cya')
... channel.close()
>>>
>>>
>>> addr = ('127.0.0.1', 5555)
>>>
>>> # Create an SSLContext for the server supporting (only) TLS 1.2 with

1.8. Enabling transport security (TLS) 15

http://docs.python.org/3/library/ssl.html#ssl.SSLContext
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/ssl.html#ssl.SSLContext

aiomas Documentation, Release 0.6.1

>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> server_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> server_ctx.set_ciphers('ECDH+AESGCM')
>>> # Load the cert and key for authentication against clients
>>> server_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>> # The client also needs to authenticate itself with a cert signed by ca.pem
>>> server_ctx.verify_mode = ssl.CERT_REQUIRED
>>> server_ctx.load_verify_locations(cafile='ca.pem')
>>> # Only use ECDH keys once per SSL session
>>> server_ctx.options |= ssl.OP_SINGLE_ECDH_USE
>>> # Disable TLS compression
>>> server_ctx.options |= ssl.OP_NO_COMPRESSION
>>>
>>> # Start the server.
>>> # It will use "server_ctx" to enable TLS for each connection.
>>> server = aiomas.run(aiomas.channel.start_server(addr, handle_client,
... ssl=server_ctx))
>>>
>>> # Create an SSLContext for the client supporting (only) TLS 1.2 with
>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> client_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> client_ctx.set_ciphers('ECDH+AESGCM')
>>> # The server needs to authenticate itself with a cert signed by ca.pem.
>>> # And we also want ot verify its hostname.
>>> client_ctx.verify_mode = ssl.CERT_REQUIRED
>>> client_ctx.load_verify_locations(cafile='ca.pem')
>>> client_ctx.check_hostname = True
>>> # Load the cert and key for authentication against the server
>>> client_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>>
>>> # Run the client. It will use "client_ctx" to enable TLS.
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>>
>>> # Shutdown the server
>>> server.close()
>>> aiomas.run(server.wait_closed())

As you can see, the SSL contexts used by servers and clients are slightly different. Clients should verify
that the hostname they connected to is the same as in the server’s certificate. Servers on the other hand
can set a few more options for a TLS connection.

aiomas offers two functions that create secure SSL contexts with the same settings as in the example
above – make_ssl_server_context() and make_ssl_client_context():

>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem', 'device.key')
>>> server = aiomas.run(aiomas.channel.start_server(
... addr, handle_client, ssl=server_ctx))
>>>
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem', 'device.key')
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

16 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

1.8.5 TLS configuration for agent containers

An agent Container has its own server socket and creates a number of client sockets when it connects
to other containers.

You can easily enable TLS for both socket types by passing an SSLCerts instance to the container.
This is a named tuple with the filenames of the root CA certificate, the certificate for authenticating the
container as well as the corresponding private key:

>>> import aiomas
>>>
>>> sslcerts = aiomas.SSLCerts('ca.pem', 'device.pem', 'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=sslcerts)
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

The container will use the make_ssl_server_context() and
make_ssl_client_context() functions to create the necessary SSL contexts.

If you need more flexibility, you can alternatively pass a tuple with two SSL contexts (one for the server
and one for client sockets) to the container:

>>> import aiomas
>>>
>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem', 'device.key')
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem', 'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=(server_ctx, client_ctx))
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

1.9 API reference

The API reference provides detailed descriptions of aiomas’ classes and functions.

1.9.1 aiomas

This module provides easier access to the most used components of aiomas. This purely for your
convenience and you can, of cource, also import everything from its actual submodule.

Decorators

expose(func) Decorator that enables RPC access to the decorated function.
serializable([cls, repr]) Class decorator that makes the decorated class serializable by aiomas.codecs.

Functions

1.9. API reference 17

aiomas Documentation, Release 0.6.1

async(coro_or_future[, ignore_cancel, loop]) Run asyncio.async() with coro_or_future and set a callback that instantly raises all exceptions.
run([until]) Run the event loop forever or until the task/future until is finished.
make_ssl_server_context(cafile, certfile, ...) Return an ssl.SSLContext that can be used by a server socket.
make_ssl_client_context(cafile, certfile, ...) Return an ssl.SSLContext that can be used by a client socket.

Exceptions

AiomasError Base class for all exceptions defined by aiomas.
RemoteException(origin, remote_traceback) Wraps a traceback of an exception on the other side of a channel.

Classes

Agent(container) Base class for all agents.
Container(base_url, clock, connect_kwargs) Container for agents.
SSLCerts(cafile, certfile, keyfile) namedtuple() storing the names of a CA file, a
JSON () A Codec that uses JSON to encode and decode messages.
MsgPack() A Codec that uses msgpack to encode and decode messages.
MsgPackBlosc() A Codec that uses msgpack to encode and decode messages and blosc to compress them.
AsyncioClock() asyncio based real-time clock.
ExternalClock(utc_start[, init_time]) A clock that can be set by external process in order to synchronize it with other systems.

1.9.2 aiomas.agent

This module implements the base class for agents (Agent) and containers for agents (Container).

Every agent must live in a container. A container can contain one ore more agents. Containers are
responsible for making connections to other containers and agents. They also provide a factory function
for spawning new agent instances and registering them with the container.

Thus, the Agent base class is very light-weight. It only has a name, a reference to its container and an
RPC router (see aiomas.rpc).

class aiomas.agent.SSLCerts(cafile, certfile, keyfile)
namedtuple() storing the names of a CA file, a certificate file and the associated private key
file.

See also aiomas.util.make_ssl_server_context() and
aiomas.util.make_ssl_client_context().

cafile
Alias for field number 0

certfile
Alias for field number 1

keyfile
Alias for field number 2

class aiomas.agent.Container(base_url, clock, connect_kwargs)
Container for agents.

18 Chapter 1. Contents:

http://docs.python.org/3/library/asyncio-task.html#asyncio.async
http://docs.python.org/3/library/ssl.html#ssl.SSLContext
http://docs.python.org/3/library/ssl.html#ssl.SSLContext
http://docs.python.org/3/library/collections.html#collections.namedtuple
http://docs.python.org/3/library/asyncio.html#module-asyncio
http://docs.python.org/3/library/collections.html#collections.namedtuple

aiomas Documentation, Release 0.6.1

You should not instantiate containers directly but use the create() method/coroutine instead.
This makes sure that the container’s server socket is fully operational when it is created.

The container allows its agents to create connections to other agents (via connect()).

In order to destroy a container and close all of its sockets, call shutdown().

classmethod create(addr, *, clock=None, codec=None, extra_serializers=None,
ssl=None, async=False)

Instantiate a container and create a server socket for it.

This function is a classmethod and coroutine.

Parameters

• addr – is the address that the server socket is bound to. It may be a (host,
port) tuple or a path for a Unix domain socket.

If host is ’0.0.0.0’ / ’::’, the server is bound to all available IPv4 or
IPv6 interfaces respectively. If host is None or ’’, the server is bound to
all available IPv4 and IPv6 interfaces. In these cases, the machine’s FQDN
(see socket.getfqdn()) should be resolvable and point to that machine
as it will be used for the agent’s addresses.

If host is a simple (IPv4 or IPv6) IP address, it will be used for the agent’s
addresses as is.

• clock – can be an instance of BaseClock.

It allows you to decouple the container’s (and thus, its agent’s) time from
the system clock. This makes it easier to integrate your system with other
simulators that may provide a clock for you or to let your MAS run as fast
as possible.

By default, the real-time AsyncioClock will be used.

• codec – can be a Codec subclass (not an instance!). JSON is used by
default.

• extra_serializers – is an optional list of extra serializers for the
codec. The list entries need to be callables that return a tuple with the argu-
ments for add_serializer().

• ssl – allows you to enable TLS for all incoming and outgoing TCP con-
nections. It may either be an SSLCerts instance or a tuple containing
two SSLContext instances, where the first one will be used for the server
socket, the second one for client sockets.

• async – must be set to True if the event loop is already running when
you call this method. This function then returns a coroutine that you need
to yield from in order to get the container. By default it will block until
the server has been started and return the container.

Returns a fully initialized Container instance if async is False or else a
coroutine returning the instance when it is done.

Invocation examples:

Synchronous:
container = Container.create(...)

1.9. API reference 19

http://docs.python.org/3/library/socket.html#socket.getfqdn
http://docs.python.org/3/library/ssl.html#ssl.SSLContext

aiomas Documentation, Release 0.6.1

Asynchronous:
container = yield from Container.create(..., async=True)

clock
The clock of the container. Instance of aiomas.clocks.BaseClock.

connect(url)
Connect to the argent available at url and return a proxy to it.

url is a string <protocol>://<addr>//<agent-id> (e.g.,
’tcp://localhost:5555/0’).

shutdown(async=False)
Close the container’s server socket and the RPC services for all outgoing TCP connections.

If async is left to False, this method calls asyncio.BaseEventLoop.run_until_complete()
in order to wait until all sockets are closed.

If the event loop is already running when you call this method, set async to True. The
return value then is a coroutine that you need to yield from in order to actually shut the
container down:

yield from container.shutdown(async=True)

validate_aid(aid)
Return the class name for the agent represented by aid if it exists or None.

class aiomas.agent.Agent(container)
Base class for all agents.

router
Descriptor that creates an RPC Router for every agent instance.

You can override this in a sub-class if you need to. (Usually, you don’t.)

container
The Container that the agent lives in.

addr
The agent’s address.

1.9.3 aiomas.channel

This module implements and asyncio asyncio.Protocol protocol for a request-reply Channel.

aiomas.channel.DEFAULT_CODEC
Default codec: JSON

aiomas.channel.open_connection(addr, *, loop=None, codec=None, ex-
tra_serializers=(), **kwds)

Return a Channel connected to addr.

This is a convenience wrapper for asyncio.BaseEventLoop.create_connection()
and asyncio.BaseEventLoop.create_unix_connection().

If addr is a tuple (host, port), a TCP connection will be created. If addr is a string, it should
be a path name pointing to the unix domain socket to connect to.

You can optionally provide the event loop to use.

20 Chapter 1. Contents:

http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.run_until_complete
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_connection

aiomas Documentation, Release 0.6.1

By default, the JSON codec is used. You can override this by passing any subclass of
aiomas.codecs.Codec as codec.

You can also pass a list of extra_serializers for the codec. The list entires need to be callables that
return a tuple with the arguments for add_serializer().

The remaining keyword argumens kwds are forwarded to
asyncio.BaseEventLoop.create_connection() and
asyncio.BaseEventLoop.create_unix_connection() respectively.

aiomas.channel.start_server(addr, client_connected_cb, *, loop=None,
codec=None, extra_serializers=(), **kwds)

Start a server listening on addr and call client_connected_cb for every client connecting to it.

This function is a convenience wrapper for asyncio.BaseEventLoop.create_server()
and asyncio.BaseEventLoop.create_unix_server().

If addr is a tuple (host, port), a TCP socket will be created. If addr is a string, a unix
domain socket at this path will be created.

The single argument of the callable client_connected_cb is a new instance of Channel.

You can optionally provide the event loop to use.

By default, the JSON codec is used. You can override this by passing any subclass of
aiomas.codecs.Codec as codec.

You can also pass a list of extra_serializers for the codec. The list entires need to be callables that
return a tuple with the arguments for add_serializer().

The remaining keyword argumens kwds are forwarded to
asyncio.BaseEventLoop.create_server() and asyncio.BaseEventLoop.create_unix_server()
respectively.

class aiomas.channel.ChannelProtocol(codec, client_connected_cb=None, *, loop)
Asyncio asyncio.Protocol which connects the low level transport with the high level
Channel API.

The codec is used to (de)serialize messages. It should be a sub-class of
aiomas.codecs.Codec.

Optionally you can also pass a function/coroutine client_connected_cb that will be executed when
a new connection is made (see start_server()).

connection_made(transport)
Create a new Channel instance for a new connection.

Also call the client_connected_cb if one was passed to this class.

connection_lost(exc)
Set a ConnectionError to the Channel to indicate that the connection is closed.

data_received(data)
Buffer incomming data until we have a complete message and then pass it to Channel.

Messages are fixed length. The first four bytes (in network byte order) encode the length
of the following payload. The payload is a triple (msg_type, msg_id, content)
encoded with the specified codec.

eof_received()
Set a ConnectionResetError to the Channel.

1.9. API reference 21

http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_unix_server
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
http://docs.python.org/3/library/exceptions.html#ConnectionError
http://docs.python.org/3/library/exceptions.html#ConnectionResetError

aiomas Documentation, Release 0.6.1

write(content)
Serialize content and write the result to the transport.

This method is a coroutine.

pause_writing()
Set the paused flag to True.

Can only be called if we are not already paused.

resume_writing()
Set the paused flat to False and trigger the waiter future.

Can only be called if we are paused.

class aiomas.channel.Request(content, message_id, protocol)
Represents a request returned by Channel.recv(). You shoudn’t instantiate it yourself.

content contains the incoming message.

msg_id is the ID for that message. It is unique within a channel.

protocol is the channel’s ChannelProtocol instance that is used for writing back the reply.

To reply to that request you can yield from Request.reply() or Request.fail().

content
The content of the incoming message.

reply(result)
Reply to the request with the provided result.

fail(exception)
Indicate a failure described by the exception instance.

This will raise a RemoteException on the other side of the channel.

class aiomas.channel.Channel(protocol, codec, transport, loop)
A Channel represents a request-reply channel between two endpoints. An instance of it is returned
by open_connection() or is passed to the callback of start_server().

protocol is an instance of ChannelProtocol.

transport is an asyncio.BaseTransport.

loop is an instance of an asyncio.BaseEventLoop.

codec
The codec used to de-/encode messages send via the channel.

transport
The transport of this channel (see the Python documentation for details).

send(content)
Send a request content to the other end and return a future which is triggered when a reply
arrives.

One of the following exceptions may be raised:

•RemoteException: The remote site raised an exception during the computation of
the result.

22 Chapter 1. Contents:

http://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop
https://docs.python.org/3/library/asyncio-protocol.html#transports

aiomas Documentation, Release 0.6.1

•ConnectionError (or its subclass ConnectionResetError): The connection
was closed during the request.

•RuntimeError:

–If an invalid message type was received.

–If the future returned by this method was already triggered or canceled by a third
party when an answer to the request arrives (e.g., if a task containing the future
is cancelled). You get more detailed exception messages if you enable asyncio’s
debug mode

try:
result = yield from channel.request('ohai')

except RemoteException as exc:
print(exc)

recv()
Wait for an incoming Request and return it.

May raise one of the following exceptions:

•ConnectionError (or its subclass ConnectionResetError): The connection
was closed during the request.

•RuntimeError: If two processes try to read from the same channel or if an invalid
message type was received.

close()
Close the channel’s transport.

get_extra_info(name, default=None)
Wrapper for asyncio.BaseTransport.get_extra_info().

1.9.4 aiomas.clocks

Clocks to be used with aiomas.agent.Container.

All clocks should subclass BaseClock. Currently available clock types are:

• AsyncioClock: a real-time clock synchronized with the asyncio event loop.

• ExternalClock: a clock that can be set by external tasks / processes in order to synchronize it
with external systems or simulators.

class aiomas.clocks.BaseClock
Interface for clocks.

Clocks must at least implement time() and utcnow().

time()
Return the value (in seconds) of a monotonic clock.

The return value of consecutive calls is guaranteed to be greater or equal then the results of
previous calls.

The initial value may not be defined. Don’t depend on it.

utcnow()
Return an arrow.arrow.Arrow date with the current time in UTC.

1.9. API reference 23

http://docs.python.org/3/library/exceptions.html#ConnectionError
http://docs.python.org/3/library/exceptions.html#ConnectionResetError
http://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio-dev.html
http://docs.python.org/3/library/exceptions.html#ConnectionError
http://docs.python.org/3/library/exceptions.html#ConnectionResetError
http://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport.get_extra_info
http://docs.python.org/3/library/asyncio.html#module-asyncio
http://crsmithdev.com/arrow/index.html#arrow.arrow.Arrow

aiomas Documentation, Release 0.6.1

sleep(dt, result=None)
Sleep for a period dt in seconds. Return an asyncio.Future.

If result is provided, it will be passed back to the caller when the coroutine has finished.

sleep_until(t, result=None)
Sleep until the time t. Return an asyncio.Future.

t may either be a number in seconds or an arrow.arrow.Arrow date.

If result is provided, it will be passed back to the caller when the coroutine has finished.

call_in(dt, func, *args)
Schedule the execution of func(*args) in dt seconds and return immediately.

Return an opaque handle which lets you cancel the scheduled call via its cancel()method.

call_at(t, func, *args)
Schedule the execution of func(*args) at t and return immediately.

t may either be a number in seconds or an arrow.arrow.Arrow date.

Return an opaque handle which lets you cancel the scheduled call via its cancel()method.

class aiomas.clocks.AsyncioClock
asyncio based real-time clock.

class aiomas.clocks.ExternalClock(utc_start, init_time=0)
A clock that can be set by external process in order to synchronize it with other systems.

The initial UTC date utc_start may either be an arrow.arrow.Arrow instance or something
that arrow.factory.ArrowFactory.get() can parse.

class aiomas.clocks.TimerHandle(future, callback)
This class lets you cancel calls scheduled by ExternalClock.

cancel()
Cancel the scheduled call represented by this handle.

1.9.5 aiomas.codecs

This package imports the codecs that can be used for de- and encoding incoming and outgoing messages:

• JSON uses JSON

• MsgPack uses msgpack

• MsgPackBlosc uses msgpack and Blosc

All codecs should implement the base class Codec.

aiomas.codecs.serializable(repr=True)
Class decorator that makes the decorated class serializable by aiomas.codecs.

The decorator tries to extract all arguments to the class’ __init__(). That means, the argu-
ments must be available as attributes with the same name.

The decorator adds the following methods to the decorated class:

•__asdict__(): Returns a dict with all __init__ parameters

•__fromdict__(dict): Creates a new class instance from dict

24 Chapter 1. Contents:

http://docs.python.org/3/library/asyncio-task.html#asyncio.Future
http://docs.python.org/3/library/asyncio-task.html#asyncio.Future
http://crsmithdev.com/arrow/index.html#arrow.arrow.Arrow
http://crsmithdev.com/arrow/index.html#arrow.arrow.Arrow
http://docs.python.org/3/library/asyncio.html#module-asyncio
http://crsmithdev.com/arrow/index.html#arrow.arrow.Arrow
http://crsmithdev.com/arrow/index.html#arrow.factory.ArrowFactory.get
http://www.json.org/
http://msgpack.org/
http://msgpack.org/
http://blosc.org/

aiomas Documentation, Release 0.6.1

•__serializer__(): Returns a tuple with args for Codec.add_serializer()

•__repr__(): Returns a generic instance representation. Adding this method can be deac-
tivated by passing repr=False to the decorator.

Example:

>>> import aiomas.codecs
>>>
>>> @aiomas.codecs.serializable
... class A:
... def __init__(self, x, y):
... self.x = x
... self._y = y
...
... @property
... def y(self):
... return self._y
>>>
>>> codec = aiomas.codecs.JSON()
>>> codec.add_serializer(*A.__serializer__())
>>> a = codec.decode(codec.encode(A(1, 2)))
>>> a
A(x=1, y=2)

class aiomas.codecs.Codec
Base class for all Codecs.

Subclasses must implement encode() and decode().

encode(data)
Encode the given data and return a bytes object.

decode(data)
Decode data from bytes to the original data structure.

add_serializer(type, serialize, deserialize)
Add methods to serialize and deserialize objects typed type.

This can be used to de-/encode objects that the codec otherwise couldn’t encode.

serialize will receive the unencoded object and needs to return an encodable serialization of
it.

deserialize will receive an objects representation and should return an instance of the original
object.

serialize_obj(obj)
Serialize obj to something that the codec can encode.

deserialize_obj(obj_repr)
Deserialize the original object from obj_repr.

class aiomas.codecs.JSON
A Codec that uses JSON to encode and decode messages.

class aiomas.codecs.MsgPack
A Codec that uses msgpack to encode and decode messages.

class aiomas.codecs.MsgPackBlosc
A Codec that uses msgpack to encode and decode messages and blosc to compress them.

1.9. API reference 25

http://docs.python.org/3/library/functions.html#bytes
http://docs.python.org/3/library/functions.html#bytes

aiomas Documentation, Release 0.6.1

1.9.6 aiomas.exceptions

Exception types used by aiomas.

exception aiomas.exceptions.AiomasError
Base class for all exceptions defined by aiomas.

exception aiomas.exceptions.RemoteException(origin, remote_traceback)
Wraps a traceback of an exception on the other side of a channel.

origin is the remote peername.

remote_traceback is the remote exception’s traceback.

1.9.7 aiomas.rpc

This module implements remote procedure calls (RPC) on top of request-reply channels (see
aiomas.channel).

RPC connections are represented by instances of RpcClient (one for each side of a
aiomas.channel.Channel). They provide access to the functions served by the remote side
of the channel via Proxy instances. Optionally, they can provide their own RPC service (via
rpc_service()) so that the remote side can make calls as well.

An RPC service is defined by a Router. A router resolves paths requested by the remote side. It can
also handle sub-routers (which allows you to build hierarchies for nested calls) and is able to perform a
reverse-lookup of a router (mapping a fuction to its path).

Routers provide the functions and methods of dictionaries or class instances. Dict routers can be created
by passing a dictionary to Router. For classes, you create a Service instance as router class attribute.
This creates a Descriptor which then creates a new router instance for each class instance.

Functions that should be callable from the remote side must be decorated with expose();
Router.expose() and Service.expose() are aliases for it.

aiomas.rpc.open_connection(addr, *, router=None, **kwds)
Return an RpcClient connected to addr.

This is a convenience wrapper for aiomas.channel.open_connection(). All keyword
arguments (kwds) are forwared to it.

You can optionally pass a router to allow the remote site to call back to us.

aiomas.rpc.start_server(addr, router, client_connected_cb=None, **kwds)
Start a server socket on host:port and create an RPC service with the provided handler for each
new client.

This is a convenience wrapper for aiomas.channel.start_server(). All keyword argu-
ments (kwds) are forwared to it.

router must be a Router instance for the rpc_service() that is started for each new con-
nection.

client_connected_cb is an optional callback that will be called with with the RpcClient instance
for each new connection.

Raise a ValueError if handler is not decorated properly.

26 Chapter 1. Contents:

http://docs.python.org/3/library/exceptions.html#ValueError

aiomas Documentation, Release 0.6.1

aiomas.rpc.rpc_service(router, channel)
Serve the functions provided by the Router router via the Channel channel.

Forward errors raised by the handler to the caller.

Stop running when the connection closes.

aiomas.rpc.expose(func)
Decorator that enables RPC access to the decorated function.

func will not be wrapped but only gain an __rpc__ attribute.

class aiomas.rpc.RoutingDict(dict=None)
Wrapper for dicts so that they can be used as RPC routers.

dict = None
The wrapped dict.

router = None
The dict’s router instance.

class aiomas.rpc.Router(obj)
The Router resolves paths to functions provided by their object obj (or its children). It can also
perform a reverse lookup to get the path of the router (and the router’s obj).

The obj can be a class, an instance or a dict.

obj = None
The object to which this router belongs to.

name = None
The name of the router (empty for root routers).

parent = None
The parent router or None for root routers.

path
The path to this router (without trailing slash).

resolve(path)
Resolve path and return the corresponding function.

path is a string with path components separated by / (without trailing slash).

Raise a LookupError if no handler function can be found for path or if the function is not
exposed (see expose()).

static expose(func)
Alias for expose().

add(name)
Add the sub-router name (stored at self.obj.<name>) to this router.

Convenience wrapper for set_sub_router().

set_sub_router(router, name)
Set self as parent for the router named name.

class aiomas.rpc.Service(sub_routers=())
A Data Descriptor that creates a new Router instance for each class instance to which it is set.

The attribute name for the Service should always be router:

1.9. API reference 27

http://docs.python.org/3/library/exceptions.html#LookupError

aiomas Documentation, Release 0.6.1

class Spam:
router = aiomas.rpc.Service()

You can optionally pass a list with the attribute names of classes with sub-routers. This required
to build hierarchies of routers, e.g.:

class Eggs:
router = aiomas.rpc.Service()

class Spam:
router = aiomas.rpc.Service(['eggs'])

def __init__(self):
self.eggs = Eggs() # Instance with a sub-router

static expose(func)
Alias for expose().

class aiomas.rpc.RpcClient(channel, router=None)
The RpcClient provides proxy objects for remote calls via its remote attribute.

channel is a Channel instance for communicating with the remote side.

If router is not None, it will also start its own RPC service so the other side can make calls to us
as well.

channel
The communication Channel of this instance.

service
The RPC service process for this connection.

remote
A Proxy for remote methods.

close()
Close the connection.

class aiomas.rpc.Proxy(channel, path)
Proxy object for remote objects and functions.

__weakref__
list of weak references to the object (if defined)

__getattr__(name)
Return a new proxy for name.

__call__(*args, **kwargs)
Call the remote method represented by this proxy and return its result.

The result is a future, so you need to yield from it in order to get the actual return value
(or exception).

1.9.8 aiomas.util

This module contains some utility functions.

28 Chapter 1. Contents:

aiomas Documentation, Release 0.6.1

aiomas.util.arrow_serializer()
Return a serializer for arrow dates.

The return value is an argument tuple for aiomas.codecs.Codec.add_serializer().

aiomas.util.async(coro_or_future, ignore_cancel=True, loop=None)
Run asyncio.async() with coro_or_future and set a callback that instantly raises all excep-
tions.

If ignore_cancel is left True, no exception is raised if the task was canceled. If you also want to
raise the CancelledError, set the flag to False..

Return an asyncio.Task object.

The difference between this function and asyncio.async() subtle, but important if an error
is raised by the task:

asyncio.async() returns a future (asyncio.Task is a subclass of asyncio.Future)
for the task that you created. By the time that future goes out of scope, asyncio checks if someone
was interested in its result or not. If the result was never retrieved, the exception is printed to
stderr.

If you call it like asyncio.async(mytask()) (note that we don’t keep a reference to the fu-
ture here), an exception in mytask will pre printed immediately when the task is done. If, however,
we store a reference to the future (fut = asyncio.async(mytask())), the exception only
gets printed when fut goes out of scope. That means if, for example, an Agent creates a task
and stores it as an instance attribute, our system may keep running for a long time after the ex-
ception has occured (or even block forever) and we won’t see any stacktrace. This is because the
reference to the task is still there and we could, in theory, still retrieve the exception from there.

Since this can make debugging very hard, this method simply registers a callback to the future.
The callback will try to get the result from the future when it is done and will thus print any
exceptions immediately.

aiomas.util.run(until=None)
Run the event loop forever or until the task/future until is finished.

This is an alias to asyncio’s run_forever() if until is None and to
run_until_complete() if not.

aiomas.util.make_ssl_server_context(cafile, certfile, keyfile)
Return an ssl.SSLContext that can be used by a server socket.

The server will use the certificate in certfile and private key in keyfile (both in PEM format) to
authenticate itself.

It requires clients to also authenticate themselves. Their certificates will be validated with the root
CA certificate in cafile.

It will use TLS 1.2 with ECDH+AESGCM encryption. ECDH keys won’t be reused in distinct
SSL sessions. Compression is disabled.

aiomas.util.make_ssl_client_context(cafile, certfile, keyfile)
Return an ssl.SSLContext that can be used by a client socket.

It uses the root CA certificate in cafile to validate the server’s certificate. It will also check the
server’s hostname.

The client will use the certificate in certfile and private key in keyfile (both in PEM format) to
authenticate itself.

1.9. API reference 29

http://docs.python.org/3/library/asyncio-task.html#asyncio.async
http://docs.python.org/3/library/asyncio-task.html#asyncio.Task
http://docs.python.org/3/library/asyncio-task.html#asyncio.async
http://docs.python.org/3/library/asyncio-task.html#asyncio.async
http://docs.python.org/3/library/asyncio-task.html#asyncio.Task
http://docs.python.org/3/library/asyncio-task.html#asyncio.Future
http://docs.python.org/3/library/ssl.html#ssl.SSLContext
http://docs.python.org/3/library/ssl.html#ssl.SSLContext

aiomas Documentation, Release 0.6.1

It will use TLS 1.2 with ECDH+AESGCM encryption.

30 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

aiomas Documentation, Release 0.6.1

32 Chapter 2. Indices and tables

Python Module Index

a
aiomas, 17
aiomas.agent, 18
aiomas.channel, 20
aiomas.clocks, 23
aiomas.codecs, 24
aiomas.exceptions, 26
aiomas.rpc, 26
aiomas.util, 28

33

aiomas Documentation, Release 0.6.1

34 Python Module Index

Index

Symbols
__call__() (aiomas.rpc.Proxy method), 28
__getattr__() (aiomas.rpc.Proxy method), 28
__weakref__ (aiomas.rpc.Proxy attribute), 28

A
add() (aiomas.rpc.Router method), 27
add_serializer() (aiomas.codecs.Codec method),

25
addr (aiomas.agent.Agent attribute), 20
Agent (class in aiomas.agent), 20
aiomas (module), 17
aiomas.agent (module), 18
aiomas.channel (module), 20
aiomas.clocks (module), 23
aiomas.codecs (module), 24
aiomas.exceptions (module), 26
aiomas.rpc (module), 26
aiomas.util (module), 28
AiomasError, 26
arrow_serializer() (in module aiomas.util), 28
async() (in module aiomas.util), 29
AsyncioClock (class in aiomas.clocks), 24

B
BaseClock (class in aiomas.clocks), 23

C
cafile (aiomas.agent.SSLCerts attribute), 18
call_at() (aiomas.clocks.BaseClock method), 24
call_in() (aiomas.clocks.BaseClock method), 24
cancel() (aiomas.clocks.TimerHandle method), 24
certfile (aiomas.agent.SSLCerts attribute), 18
channel (aiomas.rpc.RpcClient attribute), 28
Channel (class in aiomas.channel), 22
ChannelProtocol (class in aiomas.channel), 21
clock (aiomas.agent.Container attribute), 20
close() (aiomas.channel.Channel method), 23
close() (aiomas.rpc.RpcClient method), 28

codec (aiomas.channel.Channel attribute), 22
Codec (class in aiomas.codecs), 25
connect() (aiomas.agent.Container method), 20
connection_lost() (aiomas.channel.ChannelProtocol

method), 21
connection_made()

(aiomas.channel.ChannelProtocol
method), 21

container (aiomas.agent.Agent attribute), 20
Container (class in aiomas.agent), 18
content (aiomas.channel.Request attribute), 22
create() (aiomas.agent.Container class method), 19

D
data_received() (aiomas.channel.ChannelProtocol

method), 21
decode() (aiomas.codecs.Codec method), 25
DEFAULT_CODEC (in module aiomas.channel),

20
deserialize_obj() (aiomas.codecs.Codec method),

25
dict (aiomas.rpc.RoutingDict attribute), 27

E
encode() (aiomas.codecs.Codec method), 25
eof_received() (aiomas.channel.ChannelProtocol

method), 21
expose() (aiomas.rpc.Router static method), 27
expose() (aiomas.rpc.Service static method), 28
expose() (in module aiomas.rpc), 27
ExternalClock (class in aiomas.clocks), 24

F
fail() (aiomas.channel.Request method), 22

G
get_extra_info() (aiomas.channel.Channel

method), 23

J
JSON (class in aiomas.codecs), 25

35

aiomas Documentation, Release 0.6.1

K
keyfile (aiomas.agent.SSLCerts attribute), 18

M
make_ssl_client_context() (in module aiomas.util),

29
make_ssl_server_context() (in module

aiomas.util), 29
MsgPack (class in aiomas.codecs), 25
MsgPackBlosc (class in aiomas.codecs), 25

N
name (aiomas.rpc.Router attribute), 27

O
obj (aiomas.rpc.Router attribute), 27
open_connection() (in module aiomas.channel), 20
open_connection() (in module aiomas.rpc), 26

P
parent (aiomas.rpc.Router attribute), 27
path (aiomas.rpc.Router attribute), 27
pause_writing() (aiomas.channel.ChannelProtocol

method), 22
Proxy (class in aiomas.rpc), 28

R
recv() (aiomas.channel.Channel method), 23
remote (aiomas.rpc.RpcClient attribute), 28
RemoteException, 26
reply() (aiomas.channel.Request method), 22
Request (class in aiomas.channel), 22
resolve() (aiomas.rpc.Router method), 27
resume_writing() (aiomas.channel.ChannelProtocol

method), 22
router (aiomas.agent.Agent attribute), 20
router (aiomas.rpc.RoutingDict attribute), 27
Router (class in aiomas.rpc), 27
RoutingDict (class in aiomas.rpc), 27
rpc_service() (in module aiomas.rpc), 26
RpcClient (class in aiomas.rpc), 28
run() (in module aiomas.util), 29

S
send() (aiomas.channel.Channel method), 22
serializable() (in module aiomas.codecs), 24
serialize_obj() (aiomas.codecs.Codec method), 25
service (aiomas.rpc.RpcClient attribute), 28
Service (class in aiomas.rpc), 27
set_sub_router() (aiomas.rpc.Router method), 27
shutdown() (aiomas.agent.Container method), 20
sleep() (aiomas.clocks.BaseClock method), 23

sleep_until() (aiomas.clocks.BaseClock method),
24

SSLCerts (class in aiomas.agent), 18
start_server() (in module aiomas.channel), 21
start_server() (in module aiomas.rpc), 26

T
time() (aiomas.clocks.BaseClock method), 23
TimerHandle (class in aiomas.clocks), 24
transport (aiomas.channel.Channel attribute), 22

U
utcnow() (aiomas.clocks.BaseClock method), 23

V
validate_aid() (aiomas.agent.Container method),

20

W
write() (aiomas.channel.ChannelProtocol method),

21

36 Index

	Contents:
	Overview
	The agent layer
	The RPC layer
	The channel layer
	Codecs for message serialization
	Container clocks
	Testing and debugging
	Enabling transport security (TLS)
	API reference

	Indices and tables
	Python Module Index

